46 resultados para field theories in dimensions other than four
Resumo:
This work offers a method for finding some exact soliton solutions to coupled relativistic scalar field theories in 1+1 dimensions. The method can yield static solutions as well as quasistatic "charged" solutions for a variety of Lagrangians. Explicit solutions are derived as examples. A particularly interesting class of solutions is nontopological without being either charged or time dependent.
Resumo:
We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.
Resumo:
Abstract. We critically examine some recent claims that certain field theories with and without boson kinetic energy terms are equivalent. We point out that the crucial element in these claims is the finiteness or otherwise of the boson wavefunction renormalisation constant. We show that when this constant is finite, the equivalence proof offered in the literature fails in a direct way. When the constant is divergent, the claimed equivalence is only a consequence of improper use of divergent quantities.
Resumo:
Conditions for quantum topological invariance of classically topological field theories in the path integral formulation are discussed. Both the three-dimensional Chern-Simons system and a Witten-type topological field theory are shown to satisfy these conditions.
Resumo:
We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014
Resumo:
An anomalous multiflavor chiral theory, with the gauge group SU(N), is studied using non-Abelian bosonization. The theory can be made gauge invariant by introducing Wess-Zumino fields and it is particularly simple if the Jackiw-Rajaraman parameter equals 2. In the strong-coupling limit, the low-energy effective theory only contains light unconfined fermions which interact weakly.
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
The breakdown of the Stokes-Einstein (SE) relation between diffusivity and viscosity at low temperatures is considered to be one of the hallmarks of glassy dynamics in liquids. Theoretical analyses relate this breakdown with the presence of heterogeneous dynamics, and by extension, with the fragility of glass formers. We perform an investigation of the breakdown of the SE relation in 2, 3, and 4 dimensions in order to understand these interrelations. Results from simulations of model glass formers show that the degree of the breakdown of the SE relation decreases with increasing spatial dimensionality. The breakdown itself can be rationalized via the difference between the activation free energies for diffusivity and viscosity (or relaxation times) in the Adam-Gibbs relation in three and four dimensions. The behavior in two dimensions also can be understood in terms of a generalized Adam-Gibbs relation that is observed in previous work. We calculate various measures of heterogeneity of dynamics and find that the degree of the SE breakdown and measures of heterogeneity of dynamics are generally well correlated but with some exceptions. The two-dimensional systems we study show deviations from the pattern of behavior of the three-and four-dimensional systems both at high and low temperatures. The fragility of the studied liquids is found to increase with spatial dimensionality, contrary to the expectation based on the association of fragility with heterogeneous dynamics.
Resumo:
We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension Delta(phi). It is known that such theories will contain an in finite sequence of large spin operators with twists approaching 2 Delta(phi) + 2n for each integer n. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the n, Delta(phi) dependence of the anomalous dimensions. We find that for all n, the anomalous dimensions are negative for Delta(phi) satisfying the unitarity bound. We further compute the first subleading correction at large spin and show that it becomes universal for large twist. In the limit when n is large, we find exact agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.
Resumo:
We report novel results obtained for the Hubbard and t-J models by various mean-field approximations.
Resumo:
Neutron time-of-flight spectroscopy has been employed to study the crystal-field interaction in the pyrochlore titanate Ho2Ti2O7. The crystal-field parameters and corresponding energy-level scheme have been determined from a profile fit to the observed neutron spectra. The ground state is a well separated Eg doublet with a strong Ising-like anisotropy, which can give rise to frustration in the pyrochlore lattice. Using the crystal-field parameters determined for the Ho compound as an estimate of the crystal-field potential in other pyrochlore magnets, we also find the Ising type behavior for Dy. In contrast, the almost planar anisotropy found for Er and Yb prevents frustration, because of the continuous range of possible spin orientations in this case.
Resumo:
Following up the work of 1] on deformed algebras, we present a class of Poincare invariant quantum field theories with particles having deformed internal symmetries. The twisted quantum fields discussed in this work satisfy commutation relations different from the usual bosonic/fermionic commutation relations. Such twisted fields by construction are nonlocal in nature. Despite this nonlocality we show that it is possible to construct interaction Hamiltonians which satisfy cluster decomposition principle and are Lorentz invariant. We further illustrate these ideas by considering global SU(N) symmetries. Specifically we show that twisted internal symmetries can provide a natural-framework for the discussion of the marginal deformations (beta-deformations) of the N = 4 SUSY theories.
Resumo:
An optical-phonon-limited velocity model has been employed to investigate high-field transport in a selection of layered 2-D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors. Drain currents, effective electron velocities, and intrinsic cutoff frequencies as a function of carrier density have been predicted, thus providing a benchmark for the optical-phonon-limited high-field performance limits of these materials. The optical-phonon-limited carrier velocities for a selection of multi-layers of transition metal dichalcogenides and black phosphorus are found to be modest compared to their n-channel silicon counterparts, questioning the utility of biasing these devices in the source-injection dominated regime. h-BN, at the other end of the spectrum, is shown to be a very promising material for high-frequency, high-power devices, subject to the experimental realization of high carrier densities, primarily due to its large optical-phonon energy. Experimentally extracted saturation velocities from few-layer MoS2 devices show reasonable qualitative and quantitative agreement with the predicted values. The temperature dependence of the measured v(sat) is discussed and compared with the theoretically predicted dependence over a range of temperatures.
Resumo:
The Wilson coefficient corresponding to the gluon-field strength GμνGμν is evaluated for the nucleon current correlation function in the presence of a static external electromagnetic field, using a regulator mass Λ to separate the high-momentum part of the Feynman diagrams. The magnetic-moment sum rules are analyzed by two different methods and the sensitivity of the results to variations in Λ are discussed.