64 resultados para explicit formulas
Resumo:
We study a fixed-point formalization of the well-known analysis of Bianchi. We provide a significant simplification and generalization of the analysis. In this more general framework, the fixed-point solution and performance measures resulting from it are studied. Uniqueness of the fixed point is established. Simple and general throughput formulas are provided. It is shown that the throughput of any flow will be bounded by the one with the smallest transmission rate. The aggregate throughput is bounded by the reciprocal of the harmonic mean of the transmission rates. In an asymptotic regime with a large number of nodes, explicit formulas for the collision probability, the aggregate attempt rate, and the aggregate throughput are provided. The results from the analysis are compared with ns2 simulations and also with an exact Markov model of the backoff process. It is shown how the saturated network analysis can be used to obtain TCP transfer throughputs in some cases.
Resumo:
We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.
Resumo:
We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.
Resumo:
We present results for a finite variant of the one-dimensional Toom model with closed boundaries. We show that the steady state distribution is not of product form, but is nonetheless simple. In particular, we give explicit formulas for the densities and some nearest neighbour correlation functions. We also give exact results for eigenvalues and multiplicities of the transition matrix using the theory of R-trivial monoids in joint work with A. Schilling, B. Steinberg and N. M. Thiery.
Resumo:
We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].
Resumo:
With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.
Resumo:
An explicit near-optimal guidance scheme is developed for a terminal rendezvous of a spacecraft with a passive target in circular orbit around the earth. The thrust angle versus time profile for the continuous-thrust, constant-acceleration maneuver is derived, based on the assumption that the components of inertial acceleration due to relative position and velocity are negligible on account of the close proximity between the two spacecraft. The control law is obtained as a ''bilinear tangent law'' and an analytic solution to the state differential equations is obtained by expanding a portion of the integrand as an infinite series in time. A differential corrector method is proposed, to obtain real-time updates to the guidance parameters at regular time intervals. Simulation of the guidance scheme is carried out using the Clohessy-Wiltshire equations of relative motion as well as the inverse-square two-body equations of motion. Results for typical examples are presented.
Resumo:
We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.
Resumo:
Erasure coding techniques are used to increase the reliability of distributed storage systems while minimizing storage overhead. Also of interest is minimization of the bandwidth required to repair the system following a node failure. In a recent paper, Wu et al. characterize the tradeoff between the repair bandwidth and the amount of data stored per node. They also prove the existence of regenerating codes that achieve this tradeoff. In this paper, we introduce Exact Regenerating Codes, which are regenerating codes possessing the additional property of being able to duplicate the data stored at a failed node. Such codes require low processing and communication overheads, making the system practical and easy to maintain. Explicit construction of exact regenerating codes is provided for the minimum bandwidth point on the storage-repair bandwidth tradeoff, relevant to distributed-mail-server applications. A sub-space based approach is provided and shown to yield necessary and sufficient conditions on a linear code to possess the exact regeneration property as well as prove the uniqueness of our construction. Also included in the paper, is an explicit construction of regenerating codes for the minimum storage point for parameters relevant to storage in peer-to-peer systems. This construction supports a variable number of nodes and can handle multiple, simultaneous node failures. All constructions given in the paper are of low complexity, requiring low field size in particular.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
We investigate an optical waveguide system consisting of an unclad fiber core suspended at a constant distance parallel to the surface of a planar waveguide. The coupling and propagation of light in the combined system is studied using the three-dimensional explicit finite difference beam propagation method with a nonuniform mesh configuration. The power loss in the fiber and the field distribution in the waveguide are studied as a function of various parameters, such as index changes, index profile, and propagation distance, for the combined system.
Resumo:
It is observed that general explicit guidance schemes exhibit numerical instability close to the injection point. This difficulty is normally attributed to the demand for exact injection which, in turn, calls for finite corrections to be enforced in a relatively short time. The deviations in vehicle state which need corrective maneuvers are caused by the off-nominal operating conditions. Hence, the onset of terminal instability depends on the type of off-nominal conditions encountered. The proposed separate terminal guidance scheme overcomes the above difficulty by minimizing a quadratic penalty on injection errors rather than demanding an exact injection. There is also a special requirement in the terminal phase for the faster guidance computations. The faster guidance computations facilitate a more frequent guidance update enabling an accurate terminal thrust cutoff. The objective of faster computations is realized in the terminal guidance scheme by employing realistic assumptions that are accurate enough for a short terminal trajectory. It is observed from simulations that one of the guidance parameters (P) related to the thrust steering angular rates can indicate the onset of terminal instability due to different off-nominal operating conditions. Therefore, the terminal guidance scheme can be dynamically invoked based on monitoring of deviations in the lone parameter P.
Resumo:
We study t-analogs of string functions for integrable highest weight representations of the affine Kac-Moody algebra A(1)((1)). We obtain closed form formulas for certain t-string functions of levels 2 and 4. As corollaries, we obtain explicit identities for the corresponding affine Hall-Littlewood functions, as well as higher level generalizations of Cherednik's Macdonald and Macdonald-Mehta constant term identities.
Explicit and Optimal Exact-Regenerating Codes for the Minimum-Bandwidth Point in Distributed Storage
Resumo:
In the distributed storage setting that we consider, data is stored across n nodes in the network such that the data can be recovered by connecting to any subset of k nodes. Additionally, one can repair a failed node by connecting to any d nodes while downloading beta units of data from each. Dimakis et al. show that the repair bandwidth d beta can be considerably reduced if each node stores slightly more than the minimum required and characterize the tradeoff between the amount of storage per node and the repair bandwidth. In the exact regeneration variation, unlike the functional regeneration, the replacement for a failed node is required to store data identical to that in the failed node. This greatly reduces the complexity of system maintenance. The main result of this paper is an explicit construction of codes for all values of the system parameters at one of the two most important and extreme points of the tradeoff - the Minimum Bandwidth Regenerating point, which performs optimal exact regeneration of any failed node. A second result is a non-existence proof showing that with one possible exception, no other point on the tradeoff can be achieved for exact regeneration.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.