114 resultados para equatorial climate
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.
Resumo:
Forests play a critical role in addressing climate change concerns in the broader context of global change and sustainable development. Forests are linked to climate change in three ways. i) Forests are a source of greenhouse gas (GHG) emissions: ii) Forests offer mitigation opportunities to stabilise GHG concentrations: iii) Forests are impacted by climate change. This paper reviews studies related to climate change and forests in India: first, the studies estimating carbon inventory for the Indian land use change and forestry sector (LUCF), then the different models and mitigation potential estimates for the LUCF sector in India. Finally it reviews the studies on the impact of climate change on forest ecosystems in India, identifying the implications for net primary productivity and bio-diversity. The paper highlights data, modelling and research gaps relevant to the GHG inventory, mitigation potential and vulnerability and impact assessments for the forest sector in India.
Resumo:
The accelerated rate of increase in atmospheric CO2 concentration in recent years has revived the idea of stabilizing the global climate through geoengineering schemes. Majority of the proposed geoengineering schemes will attempt to reduce the amount of solar radiation absorbed by our planet. Climate modelling studies of these so called 'sunshade geoengineering schemes' show that global warming from increasing concentrations of CO2 can be mitigated by intentionally manipulating the amount of sunlight absorbed by the climate system. These studies also suggest that the residual changes could be large on regional scales, so that climate change may not be mitigated on a local basis. More recent modelling studies have shown that these schemes could lead to a slow-down in the global hydrological cycle. Other problems such as changes in the terrestrial carbon cycle and ocean acidification remain unsolved by sunshade geoengineering schemes. In this article, I review the proposed geoengineering schemes, results from climate models and discuss why geoengineering is not the best option to deal with climate change.
Resumo:
A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the fraction of each grid cell equipped for irrigation according to datasets from the Food and Agriculture Organization. Results indicate substantial regional differences in the magnitude of irrigation-induced cooling, which are attributed to three primary factors: differences in extent of the irrigated area, differences in the simulated soil moisture for the control simulation (without irrigation), and the nature of cloud response to irrigation. The last factor appeared especially important for the dry season in India, although further analysis with other models and observations are needed to verify this feedback. Comparison with observed temperatures revealed substantially lower biases in several regions for the simulation with irrigation than for the control, suggesting that the lack of irrigation may be an important component of temperature bias in this model or that irrigation compensates for other biases. The results of this study should help to translate the results from past regional efforts, which have largely focused on the United States, to regions in the developing world that in many cases continue to experience significant expansion of irrigated land.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
Wavenumber-frequency spectral analysis of different atmospheric variables has been carried Out using 25 years of data. The area considered is the tropical belt 25 degrees S-25 degrees N. A combined FFT wavelet analysis method has been used for this purpose. Variables considered are outgoing long wave radiation (OLR), 850 hPa divergence, zonal and meridional winds at 850, 500 and 200 hPa levels, sea level pressure and 850 hPa geopotential height. It is shown that the spectra of different variables have some common properties, but each variable also has few features diffe:rent from the rest. While Kelvin mode is prominent in OLR, and zonal winds, it is not clearly observed in pressure and geopotential height fields; the latter two have a dominant wavenumber zero mode not seen in other variables except in meridional wind at 200 hPa and 850 hPa divergences. Different dominant modes in the tropics show significant variations on sub-seasonal time scales.
Resumo:
A study of the response of neutral temperatures in the equatorial mesosphere to variations in solar activity has been carried out by investigating the correlation between the 10.7 cm solar radio flux and temperatures obtained from a series of 51 rocket soundings conducted over Thumba, India (8°N, 77°E) during the period December 1970–December 1971. A strong positive correlation between these two parameters has been obtained, indicating mesospheric heating effects caused by day-to-day variations in solar EUV emission. The correlation analysis indicates that this response persists over several days and that the peak correlation between the temperatures and the F10.7 index occurs with a time lag of less than 24 hr.
Resumo:
VHF nighttime scintillations, recorded during a high solar activity period at a meridian chain of stations covering a magnetic latitude belt of 3°–21°N (420 km subionospheric points) are analyzed to investigate the influence of equatorial spread F irregularities on the occurrence of scintillation at latitudes away from the equator. Observations show that saturated amplitude scintillations start abruptly about one and a half hours after ground sunset and their onset is almost simultaneous at stations whose subionospheric points are within 12°N latitude of the magnetic equator, but is delayed at a station whose subionospheric point is at 21°N magnetic latitude by 15 min to 4 hours. In addition, the occurrence of postsunset scintillations at all the stations is found to be conditional on their prior occurrence at the equatorial station. If no postsunset scintillation activity is seen at the equatorial station, no scintillations are seen at other stations also. The occurrence of scintillations is explained as caused by rising plasma bubbles and associated irregularities over the magnetic equator and the subsequent mapping of these irregularities down the magnetic field lines to the F region of higher latitudes through some instantaneous mechanism; and hence an equatorial control is established on the generation of postsunset scintillation-producing irregularities in the entire low-latitude belt.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
In this paper, we examine the major predictions made so far regarding the nature of climate change and its impacts on our region in the light of the known errors of the set of models and the observations over this century. The major predictions of the climate models about the impact of increased concentration of greenhouse gases ave at variance with the observations over the Indian region during the last century characterized by such increases and global warming. It is important to note that as far as the Indian region is concerned, the impact of year-to-year variation of the monsoon will continue to be dominant over longer period changes even in the presence of global warming. Recent studies have also brought out the uncertainties in the yields simulated by crop models. It is suggested that a deeper understanding of the links between climate and agricultural productivity is essential for generating reliable predictions of impact of climate change. Such an insight is also required for identifying cropping patterns and management practices which are tailored for sustained maximum yield in the face of the vagaries of the monsoon.
Resumo:
This case study has been carried out as a comparison between two different land-use strategies for climate change mitigation, with possible application within the Clean Development Mechanisms. The benefits of afforestation for carbon sequestration versus for bioenergy production are compared in the context of development planning to meet increasing domestic and agricultural demand for electricity in Hosahalli village, Karnataka, India. One option is to increase the local biomass based electricity generation, requiring an increased biomass plantation area. This option is compared with fossil based electricity generation where the area is instead used for producing wood for non-energy purposes while also sequestering carbon in the soil and standing biomass. The different options have been assessed using the PRO-COMAP model. The ranking of the different options varies depending on the system boundaries and time period. Results indicate that, in the short term (30 years) perspective, the mitigation potential of the long rotation plantation is largest, followed by the short rotation plantation delivering wood for energy. The bioenergy option is however preferred if a long-term view is taken. Short rotation forests delivering wood for short-lived non-energy products have the smallest mitigation potential, unless a large share of the wood products are used for energy purposes (replacing fossil fuels) after having served their initial purpose. If managed in a sustainable manner all of these strategies can contribute to the improvement of the social and environmental situation of the local community. (C) 2009 Elsevier Ltd. All rights reserved.