120 resultados para environmental flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

India possesses a diverse and rich cultural heritage and is renowned as a 'land of festivals'. These festivals attract massive community involvement paving way to new materials such as 'Plaster of Paris' being used for 'modernizing' the representation of idols with very little thought given to the issues of toxicity and environmental impacts. Another dimension to the whole issue is the plight of the artisans and the workers involved in the trade. Owing to the unorganized nature of the industry there is minimal or no guidelines pertaining-to the worker safety and health risks of the people involved. This paper attempts to address the complexities of the inherent hazards as a consequence of these socio-environmental issues and trace the scientific rationale in addressing them in a practical and pragmatic way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of a Helmholtz velocity profile in a stratified Boussinesq fluid in the presence of a rigid boundary is studied, A jump in the magnetic field is introduced at a level different from the velocity discontinuity. New unstable modes in addition to the Kelvin-Helmhottz mode are found. The wavelengths of these unstable modes are close to the wavelengths of internal Alfv6n gravity waves in the atmospher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To capture shear localization in the flow of dense granular materials in a continuum description, it has earlier been proposed that granular materials be treated as Cosserat, or micropolar, continua. Here, we provide experimental verification of the kinematic Cosserat effect, or the deviation of the particle spin from the material spin induced by the velocity gradient. Contrary to earlier belief, we find this effect to be sizable even outside the shear layers. Remarkably, the particles and material elements spin in opposite directions in flow through a hopper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of exact solutions of plane gasdynamic equations is found which describes piston-driven shocks into non-uniform media. The governing equations of these flows are taken in the coordinate system used earlier by Ustinov, and their similarity form is determined by the method of infinitesimal transformations. The solutions give shocks with velocities which either decay or grown in a finite or infinite time depending on the density distribution in the ambient medium, although their strength remains constant. The results of the present study are related to earlier investigations describing the propagation of shocks of constant strength into non-uniform media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.