127 resultados para edge-fading
Resumo:
Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.
Resumo:
Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.
Resumo:
Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.
Resumo:
LIII absorption edge measurements clearly delineate 3+ and 4+ states of Ce. Absorption edges of 3+ compounds show a single peak, while those of 4+ compounds show two peaks, both appearing at higher energies than the characteristic peaks of 3+ compounds. In systems where there is interconfigurational fluctuation, features due to both 3+ and 4+ states are distinctly seen.
Resumo:
We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).
Resumo:
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC)4.5-mu m band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller dis scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.
Resumo:
The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.
Resumo:
In this paper we address the problem of transmission of correlated sources over a fading multiple access channel (MAC). We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). Transmission schemes for discrete and Gaussian sources over a fading GMAC are considered. Various power allocation strategies are also compared.
Resumo:
Following a Migdal-Kadanoff-type bond moving procedure, we derive the renormalisation-group equations for the characteristic function of the full probability distribution of resistance (conductance) of a three-dimensional disordered system. The resulting recursion relations for the first two cumulants, K, the mean resistance and K ~ t,he meansquare deviation of resistance exhibit a mobility edge dominated by large dispersion, i.e., K $ ’/ K=, 1, suggesting inadequacy of the one-parameter scaling ansatz.
Resumo:
X-ray absorption edge and X-ray photoelectron spectroscopic studies of As-Se glasses seem to support a chemical ordering model.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
In this paper we give the performance of MQAM OFDM based WLAN in presence of single and multiple channels Zigbee interference. An analytical model for getting symbol error rate (SER) in presence of single and multiple channel Zigbee interference in AWGN and Rayleigh fading channel for MQAM OFDM system is given. Simulation results are compared with analytical symbol error rate (SER) of the MQAM-OFDM system. For analysis we have modeled the Zigbee interference using the power spectral density (PSD) of OQPSK modulation and finding the average interference power for each sub-carrier of the OFDM system. Then we have averaged the SER over all WLAN sub-carriers. Simulations closely match with the analytical models. It is seen from simulation and analytical results that performance of WLAN is severely affected by Zigbee interference. Symbol error rate (SER) for 16QAM and 64QAM OFDM system is of order of 10(-2) for SIR (signal to interference ratio) of 20dB and 30dB respectively in presence of single Zigbee interferer inside the WLAN frequency band for Rayleigh fading channel. For SIR values more than 30dB and 40dB the SER approaches the SER without interference for 16QAM and 64QAM OFDM system respectively.