126 resultados para drug targeting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: For over half a century now, the dopamine hypothesis has provided the most widely accepted heuristic model linking pathophysiology and treatment in schizophrenia. Despite dopaminergic drugs being available for six decades, this system continues to represent a key target in schizophrenia drug discovery. The present article reviews the scientific rationale for dopaminergic medications historically and the shift in our thinking since, which is clearly reflected in the investigational drugs detailed. Areas covered: We searched for investigational drugs using the key words `dopamine,' `schizophrenia,' and `Phase II' in American and European clinical trial registers (clinicaltrials. gov; clinicaltrialsregister.eu), published articles using National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. We provide a brief description of drugs targeting dopamine synthesis, release or metabolism, and receptors (agonists/partial agonists/antagonists). Expert opinion: There are prominent shifts in how we presently conceptualize schizophrenia and its treatment. Current efforts are not as much focused on developing better antipsychotics but, instead, on treatments that can improve other symptom domains, in particular cognitive and negative. This new era in the pharmacotherapy of schizophrenia moves us away from the older `magic bullet' approach toward a strategy fostering polypharmacy and a more individualized approach shaped by the individual's specific symptom profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Antipsychotic drugs date back to the 1950s and chlorpromazine. Soon after, it was established that blockade of dopamine and, in particular, the D-2 receptor was central to this effect. Dopamine continues to represent a critical line of investigation, although much of the work now focuses on its potential in other symptom domains. Areas covered: A search was carried out for investigational drugs using the key words `dopamine', `schizophrenia' and `Phase III' in an American clinical trial registry (clinicaltrials.gov), published articles using the National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. Drugs were excluded that were already FDA approved. Expert opinion: There remains interest, albeit diminished, in developing better antipsychotic compounds. The greatest enthusiasm currently centres on dopamine's role in negative and cognitive symptom domains. With theories conceptualising hypodopaminergic activity as underlying these deficits, considerable effort is focused on drug strategies that will enhance dopamine activity. Finally, a small body of research is investigating dopaminergic compounds vis-a-vis side-effect treatments. In domains beyond psychosis, however, dopamine arguably is not seen as so central, reflected in considerable research following other lines of investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomerases are an attractive drug target to develop new generation drugs against cancer. A telomere appears from the chromosomal termini and protects it from double-stranded DNA degradation. A short telomere promotes genomic instability, like end-to-end fusion and regulates the over-expression of the telomere repairing enzyme, telomerase. The telomerase maintains the telomere length, which may lead to genetically abnormal situations, leading to cancer. Thus, the design and synthesis of an efficient telomerase inhibitor is a viable strategy toward anticancer drugs development. Accordingly, small molecule induced stabilization of the G-quadruplex structure, formed by the human telomeric DNA, is an area of contemporary scientific art. Several such compounds efficiently stabilize the G-quadruplex forms of nucleic acids, which often leads to telomerase inhibition. This Feature article presents the discovery and development of the telomere structure, function and evolution in telomere targeted anticancer drug design and incorporates the recent advances in this area, in addition to discussing the advantages and disadvantages in the methods, and prospects for the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid coated mesoporous silica nanoparticle (L-MSN) were synthesized for oral delivery of ciprofloxacin for intracellular elimination of Salmonella pathogen. The particle size was found to be between 50-100 nm with a lipid coat of approximately 5 nm thickness. The lipid coating was achieved by sonication of liposomes with the MSN particles and evaluated by CLSMand FTIR studies. The L-MSN particles exhibited lower cytotoxicity compared to bare MSN particles. Ciprofloxacin, a fluoroquinolone antibiotic, loaded into the L-MSN particles showed enhanced antibacterial activity against free drug in in vitro assays. The lipid coat was found to aid in intravacuolar targeting of the drug cargo as observed by confocal microscopy studies. We also observed that a lower dose of antibiotic was sufficient to clear the pathogen from mice and increase their survivability using the L-MSN oral delivery system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes the fabrication of a novel targeted drug delivery system based on mesoporous silica-biopolymer hybrids that can release drugs in response to biological stimuli present in cancer cells. The proposed system utilizes mesoporous silica nanoparticles as a carrier to host the drug molecules. A bio-polymer cap is attached onto these particles which serves the multiple functions of drug retention, targeting and bio-responsive drug release. The biopolymer chondroitin sulphate used here is a glycosaminoglycan that can specifically bind to receptors over-expressed in cancer cells. This molecule also possesses the property of disintegrating upon exposure to enzymes over-expressed in cancer cells. When these particles interact with cancer cells, the chondroitin sulphate present on the surface recognizes and attaches onto the CD44 receptors facilitating the uptake of these particles. The phagocytised particles are then exposed to the degradative enzymes, such as hyaluronidase present inside the cancer cells, which degrade the cap resulting in drug release. By utilizing a cervical cancer cell line we have demonstrated the targetability and intracellular delivery of hydrophobic drugs encapsulated in these particles. It was observed that the system was capable of enhancing the anticancer activity of the hydrophobic drug curcumin. Overall, we believe that this system might prove to be a valuable candidate for targeted and bioresponsive drug delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and Mycobacterium tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the Mycobacterium tuberculosis and Mycobacterium smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using computer modeling of three-dimensional structures and structural information available on the crystal structures of HIV-1 protease, we investigated the structural effects of mutations, in treatment-naive and treatment-exposed individuals from India and postulated mechanisms of resistance in clade C variants. A large number of models (14) have been generated by computational mutation of the available crystal structures of drug bound proteases. Localized energy minimization was carried out in and around the sites of mutation in order to optimize the geometry of interactions present. Most of the mutations result in structural differences at the flap that favors the semiopen state of the enzyme. Some of the mutations were also found to confer resistance by affecting the geometry of the active site. The E35D mutation affects the flap structure in clade B strains and E35N and E35K mutation, seen in our modeled strains, have a more profound effect. Common polymorphisms at positions 36 and 63 in clade C also affected flap structure. Apart from a few other residues Gln-58, Asn-83, Asn-88, and Gln-92 and their interactions are important for the transition from the closed to the open state. Development of protease inhibitors by structure-based design requires investigation of mechanisms operative for clade C to improve the efficacy of therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH–cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of δ-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-14C]allylisopropylacetamide by any of the liver subcellular fractions.