60 resultados para dispersions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing models of drop breakage in stirred turbulent dispersions are applicable only to purely viscous dispersed phases. In their present form, they are found to underpredict the diameters of the largest stable drops formed when a viscoelastic fluid is dispersed into a Newtonian liquid. In purely viscous fluids, the turbulent stresses are opposed both by the stresses due to interfacial tension and the viscous stresses generated as the drop deforms. In viscoelastic fluids, drop deformation produces additional retractive elastic stresses which also oppose turbulent stresses. As the deformation rates are large, the retractive stresses can be large in magnitude. Assuming that these additional stresses decay with time, a model of viscoelastic drop breakage in turbulent stirred dispersions has been developed. The new model quantitatively predicts the dmax of viscoelastic fluids. The model, however, does not predict the observation that when the time constant of the fluid becomes large (λ > 0.5 s), the fluid can not be dispersed into droplets up to agitator speeds of about 10 rps in our equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of breakage of drops in a stirred vessel has been proposed to account for the effect of rheology of the dispersed phase. The deformation of the drop is represented by a Voigt element. A realistic description of the role of interfacial tension is incorporated by treating it as a restoring force which passes through a maximum as the drop deforms and eventually reaching a zero value at the break point. It is considered that the drop will break when the strain of the drop has reached a value equal to its diameter. An expression for maximum stable drop diameter, dmax, is derived from the model and found to be applicable over a wide range of variables, as well as to data already existing in literature. The model could be naturally extended to predict observed values of dmax when the dispersed phase is a power law fluid or a Bingham plastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant anion intercalated hydroxy salts of copper and cobalt of the formula M(OH)(2-x)(surf)(x)center dot mH(2)O [M = Cu, Co; surf = dodecyl sulfate. dodecyl benzene sulfonate. and x = 0.5 for Cu and 0.67 for Co] delaminate readily in 1-butanol to give translucent colloidal dispersions that are stable for months. The extent of delamination and the colloidal dispersion observed in these solids is higher than what had been observed for layered double hydroxides. The dispersions yield the corresponding nanoparticulate oxides on solvothermal decomposition. While the copper hydroxy salt forms similar to 300 nm dendrimer-like CuO nanostructures comprising nanorods of similar to 10 nm diameter, the cobalt analogue forms similar to 20 nm superparamagnetic particles of Co3O4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existingm odels of drop breakage in stirred dispersions grossly overpredict the maximum drop size when surface active agents are present inspite of using the lowered value of interfacial tension. It is shown that the difference in the values of dynamic and static interfacial tension, aids the turbulent stresses in drop breakage. When the difference is zero, e.g. for pure liquids and for high concentration of surfactants, the influence of the addition of surfactant is merely to reduce the interfacial tension and can be accounted for by existingm odels. A modified model has been developed, where the drop breakage is assumed to be represented by a Voigt element. The deforming stresses are due to turbulence and the difference between dynamic and static interfacial tensions. The resisting stresses arise due to interfacial tension and the viscous flow inside the drop. The model yields the existing expressions for dmax as special cases. The model has been found to be satisfactory when tested against experimental results using the styrene-water-teepol system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The various existing models for predicting the maximum stable drop diameterd max in turbulent stirred dispersions have been reviewed. Variations in the basic framework dictated by additional complexities such as the presence of drag reducing agents in the continuous phase, or viscoelasticity of the dispersed phase have been outlined. Drop breakage in the presence of surfactants in the continuous phase has also been analysed. Finally, the various approaches to obtaining expressions for the breakage and coalescence frequencies, needed to solve the population balance equation for the number density function of the dispersed phase droplets, have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of drop breakage in turbulent stirred dispersions based on interaction of a drop with eddies of a length scale smaller than the drop diameter has been developed. It predicts that, unlike the equal breakage assumed by earlier models, a large drop reduces in size due to stripping of smaller segments off it through unequal breakage. It is only when the drop nears the value of the maximum stable drop diameter that it breaks into equal parts. This new model of drop breakage, coupled with the pattern of interaction of drops with eddies of different sizes existing in the vessel, has been used to evaluate not only the breakage frequency, but also the size distribution of the daughter droplets(which was hitherto assumed). The model has been incorporated in the population balance equation and the resulting cumulative size distributions compared with those availble in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for coalescence efficiency of two drops embedded in an eddy has been developed. Unlike the other models which consider only head-on collisions, the model considers the droplets to approach at an arbitrary angle. The drop pair is permitted to undergo rotation while they approach each other. For coalescence to occur, the drops are assumed to approach each other under a squeezing force acting over the life time of eddy but which can vary with time depending upon the angle of approach. The model accounts for the deformation of tip regions of the approaching drops and, describes the rupture of the intervening film, based on stability considerations while film drainage is continuing under the combined influence of the hydrodynamic and van der Waals forces. The coalescence efficiency is defined as the ratio of the range of angles resulting in coalescence to the total range of all possible approach angles. The model not only reconciles the contradictory predictions made by the earlier models based on similar framework but also brings out the important role of dispersed-phase viscosity. It further predicts that the dispersions involving pure phases can be stabilized at high rps values. Apart from explaining the hitherto unexplained experimental data of Konno et al. qualitatively, the model also offers an alternate explanation for the interesting observations of Shinnar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared stable colloidal suspensions in a lyotropic liquid crystal exhibiting an isotropic-nematic-lamellar phase sequence. Small angle neutron scattering (SANS) and dynamic light scattering (DLS) studies show the existence of attractive interparticle interactions in the nematic phase, which lead to a gas-liquid transition of the particles. The resulting liquid phase is weakly anisotropic. Further, the nematic-lamellar transition of the liquid crystal is found to be accompanied by a liquid-solid transition of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant-intercalated layered double-hydroxide solid Mg-Al LDH-dodecyl sulfate (DDS) undergoes rapid and facile delamination to its ultimate constituent, single sheets of nanometer thickness and micrometer size, in a nonpolar solvent such as toluene to form stable dispersions. The delaminated nanosheets are electrically neutral because the surfactant chains remain tethered to the inorganic layer even on exfoliation. With increasing volume fraction of the solid, the dispersion transforms from a free-flowing sol to a solidlike gel. Here we have investigated the sol-gel transition in dispersions of the hydrophobically modified Mg-Al LDH-DDS in toluene by rheology, SAXS, and (1)H NMR measurements. The rheo-SAXS measurements show that the sharp rise in the viscosity of the dispersion during gel formation is a consequence of a tactoidal microstructure formed by the stacking of the nanosheets with an intersheet separation of 3.92 nm. The origin and nature of the attractive forces that lead to the formation of the tactoidal structure were obtained from 1D and 2D (1)H NMR measurements that provided direct evidence of the association of the toluene solvent molecules with the terminal methyl of the tethered DDS surfactant chains. Gel formation is a consequence of the attractive dispersive interactions of toluene molecules with the tails of DDS chains anchored to opposing Mg-Al LDH sheets. The toluene solvent molecules function as molecular ``glue'' holding the nanosheets within the tactoidal microstructure together. Our study shows how rheology, SAXS, and NMR measurements complement each other to provide a molecular-level description of the sol-gel transition in dispersions of a hydrophobically modified layered double hydroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.