62 resultados para constraint solving
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
This paper describes an algorithm for ``direct numerical integration'' of the initial value Differential-Algebraic Inequalities (DAI) in a time stepping fashion using a sequential quadratic programming (SQP) method solver for detecting and satisfying active path constraints at each time step. The activation of a path constraint generally increases the condition number of the active discretized differential algebraic equation's (DAE) Jacobian and this difficulty is addressed by a regularization property of the alpha method. The algorithm is locally stable when index 1 and index 2 active path constraints and bounds are active. Subject to available regularization it is seen to be stable for active index 3 active path constraints in the numerical examples. For the high index active path constraints, the algorithm uses a user-selectable parameter to perturb the smaller singular values of the Jacobian with a view to reducing the condition number so that the simulation can proceed. The algorithm can be used as a relatively cheaper estimation tool for trajectory and control planning and in the context of model predictive control solutions. It can also be used to generate initial guess values of optimization variables used as input to inequality path constrained dynamic optimization problems. The method is illustrated with examples from space vehicle trajectory and robot path planning.
Resumo:
The input-constrained erasure channel with feedback is considered, where the binary input sequence contains no consecutive ones, i.e., it satisfies the (1, infinity)-RLL constraint. We derive the capacity for this setting, which can be expressed as C-is an element of = max(0 <= p <= 0.5) (1-is an element of) H-b (p)/1+(1-is an element of) p, where is an element of is the erasure probability and Hb(.) is the binary entropy function. Moreover, we prove that a priori knowledge of the erasure at the encoder does not increase the feedback capacity. The feedback capacity was calculated using an equivalent dynamic programming (DP) formulation with an optimal average-reward that is equal to the capacity. Furthermore, we obtained an optimal encoding procedure from the solution of the DP, leading to a capacity-achieving, zero-error coding scheme for our setting. DP is, thus, shown to be a tool not only for solving optimization problems, such as capacity calculation, but also for constructing optimal coding schemes. The derived capacity expression also serves as the only non-trivial upper bound known on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.
Resumo:
Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.
Resumo:
This paper presents the architecture of a fault-tolerant, special-purpose multi-microprocessor system for solving Partial Differential Equations (PDEs). The modular nature of the architecture allows the use of hundreds of Processing Elements (PEs) for high throughput. Its performance is evaluated by both analytical and simulation methods. The results indicate that the system can achieve high operation rates and is not sensitive to inter-processor communication delay.
Resumo:
The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully lastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248-348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to beta-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.
Resumo:
This paper proposes a novel application of differential evolution to solve a difficult dynamic optimisation or optimal control problem. The miss distance in a missile-target engagement is minimised using differential evolution. The difficulty of solving it by existing conventional techniques in optimal control theory is caused by the nonlinearity of the dynamic constraint equation, inequality constraint on the control input and inequality constraint on another parameter that enters problem indirectly. The optimal control problem of finding the minimum miss distance has an analytical solution subject to several simplifying assumptions. In the approach proposed in this paper, the initial population is generated around the seed value given by this analytical solution. Thereafter, the algorithm progresses to an acceptable final solution within a few generations, satisfying the constraints at every iteration. Since this solution or the control input has to be obtained in real time to be of any use in practice, the feasibility of online implementation is also illustrated.
Resumo:
This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
The aim of this investigation is to evolve a method of solving two-dimensional unsteady flow problems by the method of characteristics. This involves the reduction of the given system of equations to an equivalent system where only interior derivatives occur on a characteristic surface. From this system, four special bicharacteristic directional derivatives are chosen. A finite difference scheme is prescribed for solving the equations. General rectangular lattices are also considered. As an example, we investigate the propagation of an initial pressure distribution in a medium at rest.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of inhomogeneous infinite simultaneous equations encountered in the analysis of surface acoustic wave propagation along the periodically perturbed surface of a piezoelectric medium.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of infinite simultaneous equations encountered in solving for the electric field of a periodic electrode structure.
Resumo:
This paper presents a constraint Jacobian matrix based approach to obtain the stiffness matrix of widely used deployable pantograph masts with scissor-like elements (SLE). The stiffness matrix is obtained in symbolic form and the results obtained agree with those obtained with the force and displacement methods available in literature. Additional advantages of this approach are that the mobility of a mast can be evaluated, redundant links and joints in the mast can be identified and practical masts with revolute joints can be analysed. Simulations for a hexagonal mast and an assembly with four hexagonal masts is presented as illustrations.
Resumo:
The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.