320 resultados para coding theory
Resumo:
Problems related to network coding for acyclic, instantaneous networks (where the edges of the acyclic graph representing the network are assumed to have zero-delay) have been extensively dealt with in the recent past. The most prominent of these problems include (a) the existence of network codes that achieve maximum rate of transmission, (b) efficient network code constructions, and (c) field size issues. In practice, however, networks have transmission delays. In network coding theory, such networks with transmission delays are generally abstracted by assuming that their edges have integer delays. Using enough memory at the nodes of an acyclic network with integer delays can effectively simulate instantaneous behavior, which is probably why only acyclic instantaneous networks have been primarily focused on thus far. However, nulling the effect of the network delays are not always uniformly advantageous, as we will show in this work. Essentially, we elaborate on issues ((a), (b) and (c) above) related to network coding for acyclic networks with integer delays, and show that using the delay network as is (without adding memory) turns out to be advantageous, disadvantageous or immaterial, depending on the topology of the network and the problem considered i.e., (a), (b) or (c).
Resumo:
In handling large volumes of data such as chemical notations, serial numbers for books, etc., it is always advisable to provide checking methods which would indicate the presence of errors. The entire new discipline of coding theory is devoted to the study of the construction of codes which provide such error-detecting and correcting means.l Although these codes are very powerful, they are highly sophisticated from the point of view of practical implementation
Resumo:
This paper considers sequential hypothesis testing in a decentralized framework. We start with two simple decentralized sequential hypothesis testing algorithms. One of which is later proved to be asymptotically Bayes optimal. We also consider composite versions of decentralized sequential hypothesis testing. A novel nonparametric version for decentralized sequential hypothesis testing using universal source coding theory is developed. Finally we design a simple decentralized multihypothesis sequential detection algorithm.
Resumo:
The set of all subspaces of F-q(n) is denoted by P-q(n). The subspace distance d(S)(X, Y) = dim(X) + dim(Y)-2dim(X boolean AND Y) defined on P-q(n) turns it into a natural coding space for error correction in random network coding. A subset of P-q(n) is called a code and the subspaces that belong to the code are called codewords. Motivated by classical coding theory, a linear coding structure can be imposed on a subset of P-q(n). Braun et al. conjectured that the largest cardinality of a linear code, that contains F-q(n), is 2(n). In this paper, we prove this conjecture and characterize the maximal linear codes that contain F-q(n).
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
We consider the problem of transmission of several discrete sources over a multiple access channel (MAC) with side information at the sources and the decoder. Source-channel separation does not hold for this channel. Sufficient conditions are provided for transmission of sources with a given distortion. The channel could have continuous alphabets (Gaussian MAC is a special case). Various previous results are obtained as special cases.
Resumo:
The stability of scheduled multiaccess communication with random coding and independent decoding of messages is investigated. The number of messages that may be scheduled for simultaneous transmission is limited to a given maximum value, and the channels from transmitters to receiver are quasistatic, flat, and have independent fades. Requests for message transmissions are assumed to arrive according to an i.i.d. arrival process. Then, we show the following: (1) in the limit of large message alphabet size, the stability region has an interference limited information-theoretic capacity interpretation, (2) state-independent scheduling policies achieve this asymptotic stability region, and (3) in the asymptotic limit corresponding to immediate access, the stability region for non-idling scheduling policies is shown to be identical irrespective of received signal powers.
Resumo:
Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.
Resumo:
The algebraic formulation for linear network coding in acyclic networks with each link having an integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes at any given time instant is a Fq-linear combination of the input symbols across different generations, where Fq denotes the field over which the network operates. We use finite-field discrete Fourier transform (DFT) to convert the output symbols at the sink nodes at any given time instant into a Fq-linear combination of the input symbols generated during the same generation. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. Furthermore, assuming time invariant local encoding kernels, we show that the transform method can be employed to achieve half the rate corresponding to the individual source-destination mincut (which are assumed to be equal to 1) for some classes of three-source three-destination multiple unicast network with delays using alignment strategies when the zero-interference condition is not satisfied.
Resumo:
In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.
Resumo:
Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections between linear index coding and representable discrete polymatroids. The index coding problem involves a sender which generates a set of messages X = {x(1), x(2), ... x(k)} and a set of receivers R which demand messages. A receiver R is an element of R is specified by the tuple (x, H) where x. X is the message demanded by R and H subset of X \textbackslash {x} is the side information possessed by R. It is first shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.
Resumo:
A novel analysis to compute the admittance characteristics of the slots cut in the narrow wall of a rectangular waveguide, which includes the corner diffraction effects and the finite waveguide wall thickness, is presented. A coupled magnetic field integral equation is formulated at the slot aperture which is solved by the Galerkin approach of the method of moments using entire domain sinusoidal basis functions. The externally scattered fields are computed using the finite difference method (FDM) coupled with the measured equation of invariance (MEI). The guide wall thickness forms a closed cavity and the fields inside it are evaluated using the standard FDM. The fields scattered inside the waveguide are formulated in the spectral domain for faster convergence compared to the traditional spatial domain expansions. The computed results have been compared with the experimental results and also with the measured data published in previous literature. Good agreement between the theoretical and experimental results is obtained to demonstrate the validity of the present analysis.