174 resultados para chemical interaction
Resumo:
The interaction of dextrin and guar gum with pyrite has been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of the polysaccharides onto pyrite reveal a region of higher adsorption density in the pH range 7.5-11, with a maximum around pH 10 for both polymers. The isotherms exhibit Langmuirian behavior. The adsorption density of guar gum onto pyrite is higher than that of dextrin. Electrokinetic measurements indicate a decrease in the electrophoretic mobility values in proportion to the concentration of the polymer added. Co-precipitation tests confirm polymer-ferric species interaction in the bulk solution, especially in the pH range 5.5-8.5. The pH range for higher adsorption, significant co-precipitation, and appreciable depression of pyrite encompass each other. XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and the hydroxyl groups of the polymeric depressants. (C) 2000 Academic Press.
Resumo:
The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.
Resumo:
Adsorption, electrokinetic, microflotation, and flocculation studies have been carried out on sphalerite and galena minerals using extracellular polysaccharides (ECP) isolated from Bacillus polymyxa. The adsorption density of ECP onto galena is found to be higher than that onto sphalerite. The adsorption of ECP onto sphalerite is found to increase from pH 3 to about pH 7, where a maximum is attained, and thereafter continuously decreases. With respect to galena, the adsorption density of ECP steadily increases with increased pH. The addition of ECP correspondingly reduces the negative electrophoretic mobilities of sphalerite and galena in absolute magnitude without shifting their isoelectric points. However, the magnitude of the reduction in the electrophoretic mobility values is found to be greater for galena compared to that for sphalerite. Microflotation tests show that galena is depressed while sphalerite is floated using ECP in the entire pH range investigated. Selective flotation tests on a synthetic mixture of galena and sphalerite corroborate that sphalerite could be floated from galena at pH 9-9.5 using ECP as a depressant for galena. Flocculation tests reveal that in the pH range 9-11, sphalerite is dispersed and galena is flocculated in the presence of ECP. Dissolution tests indicate release of the lattice metal ions from galena and sphalerite, while co-precipitation tests confirm chemical interaction between lead or zinc ions and ECP. Fourier transform infrared spectroscopic studies provide evidence in support of hydrogen bonding and chemical interaction for the adsorption of ECP onto galena/sphalerite surfaces. (C) 2002 Elsevier Science (USA).
Resumo:
Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.
Resumo:
This Letter attempts to examine the impact of the chemical interaction of the alumina substrate on the Y-Ba-Cu-O film deposited on it.
Resumo:
AgI-based composites with a general formula AgI---MxOy (MxOy = ZrO2, CeO2, Fe2O3, Sm2O3, MoO3 and WO3) have been studied in detail. The enhancement in the conductivity of AgI and its unusual thermal stability and amorphization are explained assuming a chemical interaction at the oxide-AgI interface.
Resumo:
The interaction of guar gum with biotite mica has been investigated through adsorption, flotation and electrokinetic measurements. The adsorption densities of guar gum increase with increase of pH and the isotherms exhibit Langmuirian behaviour. Pretreatment of mica with a complexing agent such as EDTA results in a decrease in the adsorption density, highlighting the contribution of metal ions to the adsorption process. An increase in the surface face-to-edge ratio lends to an increase in the adsorption density. The flotation recoveries decrease as a function of pH, complementing the adsorption results. However, polymer depressant ability is reduced in the case of EDTA treated mica, consequent to reduction of metallic sites. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in the shift of the shear plane, further away from the interface. Dissolution experiments indicate release of metal ions from mica, while co-precipitation tests confirm polymer-metal ion interaction in the bulk solution. The adsorption process is governed by hydrogen bonding as well as chemical interaction between guar gum and the surface metal hydroxide groups of mica. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.
Resumo:
ZnS quantum dots (QDs) of different sizes are synthesized by a simple chemical co-precipitation method at room temperature, by varying pH value of the reaction mixture. Samples are characterized by an X-ray diffractometer, transmission electron microscope, energy-dispersive X-ray analysis, etc. Linear optical properties, including UV-visible absorption and photoluminescence emission characteristics, of as-prepared QDs are measured. Size dependent nonlinear optical property, such as second harmonic generation (SHG) of 1064 nm Nd:YAG laser fundamental radiation in the synthesized ZnS QDs, is reported for the first time, to the best of our knowledge, by using the standard Kurtz-Perry powder method. In not to study the possibility of the synthesized ZnS QDs in different device applications ZnS/PMMA (polymethylmethacrylate) nanocomposites are also synthesized. The presence of weak chemical interaction between the polymer matrix and ZnS QDs is confirmed by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites are studied by differential scanning calorimetry and thermo-gravimetric analysis techniques, which show that the composites are stable up to similar to 300 degrees C temperature. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein protein complexes are involved in many essential cellular processes. Interfaces of protein protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence structure function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase inhibitor protein complexes. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation
Resumo:
Interaction between Paenibacillus polymyxa with minerals such as hematite, corundum, quartz and kaolinite brought about significant surface chemical changes on all the minerals. Quartz and kaolinite were rendered more hydrophobic, while hematite and corundum, became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and corundum and of proteins on quartz and kaolinite was responsible for the above surface-chemical changes. Bio-pretreatment of the above iron ore mineral mixtures resulted in the selective separation of silica and alumina from iron oxide, through bioflotation and bioflocculation. The utility of bioprocessing in the beneficiation of iron ores is demonstrated.
Resumo:
The interactions of dextrin with biotite mica and galena have been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of dextrin onto mica continuously increase with increase of pH, while those onto galena show a maximum at pH 11.5. It is observed that the adsorption density of dextrin onto galena is quite high compared to that on mica. Both the adsorption isotherms exhibit Langmuirian behavior. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in a shift of the shear plane, further away from the interface. Dissolution experiments indicate release of the lattice metal ions from mica and galena. Coprecipitation tests confirm polymer-metal ion interaction in the bulk solution. Dextrin does not exhibit any depressant action toward mica, whereas, with galena, the flotation recovery is decreased with an increase in pH beyond 9, in the presence of dextrin, complementing the adsorption results. Differential flotation results on a synthetic mixture of mica and galena show that mica can be selectively separated from galena using dextrin as a depressant for galena above pH 10. Possible mechanisms of interaction between dextrin and mica/galena are discussed.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.