24 resultados para causal discovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service discovery is vital in ubiquitous applications, where a large number of devices and software components collaborate unobtrusively and provide numerous services without user intervention. Existing service discovery schemes use a service matching process in order to offer services of interest to the users. Potentially, the context information of the users and surrounding environment can be used to improve the quality of service matching. To make use of context information in service matching, a service discovery technique needs to address certain challenges. Firstly, it is required that the context information shall have unambiguous representation. Secondly, the devices in the environment shall be able to disseminate high level and low level context information seamlessly in the different networks. And thirdly, dynamic nature of the context information be taken into account. We propose a C-IOB(Context-Information, Observation and Belief) based service discovery model which deals with the above challenges by processing the context information and by formulating the beliefs based on the observations. With these formulated beliefs the required services will be provided to the users. The method has been tested with a typical ubiquitous museum guide application over different cases. The simulation results are time efficient and quite encouraging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of application I/O access patterns is useful in several situations. First, gaining insight into what applications are doing with their data at a semantic level helps in designing efficient storage systems. Second, it helps create benchmarks that mimic realistic application behavior closely. Third, it enables autonomic systems as the information obtained can be used to adapt the system in a closed loop.All these use cases require the ability to extract the application-level semantics of I/O operations. Methods such as modifying application code to associate I/O operations with semantic tags are intrusive. It is well known that network file system traces are an important source of information that can be obtained non-intrusively and analyzed either online or offline. These traces are a sequence of primitive file system operations and their parameters. Simple counting, statistical analysis or deterministic search techniques are inadequate for discovering application-level semantics in the general case, because of the inherent variation and noise in realistic traces.In this paper, we describe a trace analysis methodology based on Profile Hidden Markov Models. We show that the methodology has powerful discriminatory capabilities that enable it to recognize applications based on the patterns in the traces, and to mark out regions in a long trace that encapsulate sets of primitive operations that represent higher-level application actions. It is robust enough that it can work around discrepancies between training and target traces such as in length and interleaving with other operations. We demonstrate the feasibility of recognizing patterns based on a small sampling of the trace, enabling faster trace analysis. Preliminary experiments show that the method is capable of learning accurate profile models on live traces in an online setting. We present a detailed evaluation of this methodology in a UNIX environment using NFS traces of selected commonly used applications such as compilations as well as on industrial strength benchmarks such as TPC-C and Postmark, and discuss its capabilities and limitations in the context of the use cases mentioned above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmental dynamic time warping (DTW) has been demonstrated to be a useful technique for finding acoustic similarity scores between segments of two speech utterances. Due to its high computational requirements, it had to be computed in an offline manner, limiting the applications of the technique. In this paper, we present results of parallelization of this task by distributing the workload in either a static or dynamic way on an 8-processor cluster and discuss the trade-offs among different distribution schemes. We show that online unsupervised pattern discovery using segmental DTW is plausible with as low as 8 processors. This brings the task within reach of today's general purpose multi-core servers. We also show results on a 32-processor system, and discuss factors affecting scalability of our methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discoverymethods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies. Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Advances in genomics technologies are providing a very large amount of data on genome-wide gene expression profiles, protein molecules and their interactions with other macromolecules and metabolites. Molecular interaction networks provide a useful way to capture this complex data and comprehend it. Networks are beginning to be used in drug discovery, in many steps of the modern discovery pipeline, with large-scale molecular networks being particularly useful for the understanding of the molecular basis of the disease. Areas covered: The authors discuss network approaches used for drug target discovery and lead identification in the drug discovery pipeline. By reconstructing networks of targets, drugs and drug candidates as well as gene expression profiles under normal and disease conditions, the paper illustrates how it is possible to find relationships between different diseases, find biomarkers, explore drug repurposing and study emergence of drug resistance. Furthermore, the authors also look at networks which address particular important aspects such as off-target effects, combination-targets, mechanism of drug action and drug safety. Expert opinion: The network approach represents another paradigm shift in drug discovery science. A network approach provides a fresh perspective of understanding important proteins in the context of their cellular environments, providing a rational basis for deriving useful strategies in drug design. Besides drug target identification and inferring mechanism of action, networks enable us to address new ideas that could prove to be extremely useful for new drug discovery, such as drug repositioning, drug synergy, polypharmacology and personalized medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships. (C) 2012 Elsevier Inc. All rights reserved.