322 resultados para bulk glasses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bulk glasses of Ge(20)Se(80-x)ln(x) (O less than or equal to x less than or equal to 18) have been used for measurements of heat capacity at constant pressure (C-p) using a differential scanning calorimeter. These measurements reveal the chemical threshold in these glasses as a function of composition. The results are discussed in the light of microscopic phase separation in these glasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alternating Differential Scanning Calorimetric (ADSC) studies on quaternary Ge15Te80-xIn5Agx glasses show the non-reversing enthalpy (Delta H-NR) at T-g to exhibit a broad global minimum in the 8% <= x <= 16% range of Ag, an observation that is taken evidence for existence of an Intermediate Phase (IP) in that range. Glasses at x < 8% are in the flexible phase while those at x > 16% in the stressed-rigid phase. The nature of crystalline phases formed upon crystallization of bulk glasses are elucidated by XRD studies, and reveal presence of Te, GeTe, Ag8GeTe6, AgTe, In2Te3 and In4Te3 phases. These experiments also reveal that the fraction of Ag- bearing phases increases while those of Te- bearing ones decreases with increasing x, suggesting progressive replacement of Te-Te bonds by Ag-Te bonds. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bulk SixTe100-x (10 less-than-or-equals, slant x less-than-or-equals, slant 28) glasses have been prepared by the melt quenching technique. The crystallization of these glasses has been studied by using differential scanning calorimetry. The composition dependence of the glass transition temperature Tg, the recrystallization temperature Tcr and the melting temperature Tm show an unusual behaviour at the composition x congruent with 20. The glasses with 10 less-than-or-equals, slant x less-than-or-equals, slant 20 undergo double glass transition and double stage crystallization phenomena. On the other hand, glasses with 22 less-than-or-equals, slant x less-than-or-equals, slant 28 exhibit eutectic crystallization. The phases at different stages of crystallization have been identified by using X-ray diffraction techniques. The unusual behaviour at x congruent with 20 can be explained on the basis of the changes in the network topologies of IV-VI chalcogenide glasses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones. notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode If component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments on Ge15Tc85-xSix glasses (2 <= x <= 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T-cl) exhibits an increase with silicon content for x<5; T-cl remains almost a constant in the composition range 5 < x <= 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (Delta C-p) is found to decrease with an increase in silicon content, exhibiting a minimum at x=5 (average coordination number, (r) = 2.4); a continuous increase is seen in Delta C-p with silicon concentration above x = 5. The effects seen in the variation with composition of T-cl and Delta C-p at x=5, are the specific signatures of the mean-field stiffness threshold at (r) = 2.4. Furthermore, a broad trough is seen in the enthalpy change (Delta H-NR), which is indicative of a thermally reversing window in Ge15Te85-xSix glasses in the composition range 2 <= x <= 6 (2.34 <= (r) <= 2.42).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alternating differential scanning calorimetry measurements have been undertaken on the Ge15Te85-xInx (1 <= x <= 11) series of glasses. It is found that there is a marginal decrease in the glass transition temperature (T-g) in the composition range 1 <= x <= 3. Above x = 3, a monotonic increase is seen in T-g which indicates a continuous build-up in network connectivity and absence of any nanophase separation. The non-reversing heat flow (Delta H-NR) has been found to exhibit a broad trough between the compositions x = 3 and 7, which clearly indicates the presence of a thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 <= x <= 7.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.