292 resultados para biodegradation characteristics


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biodegradable composites comprising of modified starch and modified nanoclay have been prepared. Starch has been modified by esterification and subsequently crosslinked. The thermal, mechanical, and biodegradation characteristics of the composites have been investigated. The compressive properties of the composites with the addition of nanoclay were twice that of crosslinked starch phthalate without addition of nanoclay. Predictive theories were used to analyze the obtained experimental results. SEM studies on fracture morphology indicated quasi-brittle fracture. Flexural properties showed considerable improvement due to nanoclay addition. The water uptake increased up to 6% nanoclay, beyond which the uptake decreased. Biodegradation studies showed an initial time lag prior to the onset of degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing industrial utilization of polyacrylamide to assist water clarification, sludge conditioning, papermaking, and secondary oil recovery leads to environmental pollution. In this work, an acrylamide degrading bacterium was isolated from paper mill effluent at Charan mahadevi, Tamilnadu, India. The minimal medium containing acrylamide (40 mM) served as a sole source of carbon and nitrogen for acrylamide degrading bacteria. The bacterial strain has grown well in 40 mM acrylamide at pH (6-7) at 30 degrees C. Within 24-48 h acrylamide was converted into acrylic acid and other metabolites. Based on biochemical characteristics and 16S rRNA gene sequence, the bacterial strain was identified as Gram negative, diplobacilli Moraxella osloensis MSU11. The acrylamide hydrolyzing bacterial enzyme acrylamidase was purified by HPLC. The enzyme molecular weight was determined to be approximately 38 kDa by SDS-PAGE using reference enzyme Pectinase. These results show that M. osloensis MSU11 has a potential to degrade the acrylamide present in the environment. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents modification of the derivation of a previously proposed constitutive model for the prediction of stress-strain behavior of municipal solid waste (MSW) incorporating different mechanisms, such as immediate compression under loading, mechanical creep, and time-dependent biodegradation effect. The model is based on critical state soil mechanics incorporating increments in volumetric strains because of elastic, plastic, creep, and biodegradation effects. The improvement introduced in this paper is the modified critical state surface and considers five variable parameters for the estimation of stress-strain behavior of MSW under different loading conditions. In addition, an expression for the strain hardening rule is derived, with considerations of time-dependent mechanical creep and biodegradation effects. The model is validated using results from experimental studies and data from published literature. The results are also compared with the predictions of the stress-strain response obtained from a well-established hyperbolic model. (c) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the method of characteristics, the effect of footing-soil interface friction angle (delta) on the bearing capacity factor N-gamma was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance B-t from the footing edge. For a given footing width (B), the value of B-t increases continuously with a decrease in delta. For delta = 0, no trapped wedge exists below the footing base, that is, B-t/B = 0.5. On the contrary, with delta = phi, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in phi. The magnitude of N-gamma increases substantially with an increase in delta/phi. The maximum depth of the plastic zone becomes higher for greater values of delta/phi. The results from the present analysis were found to compare well with those reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: Image Full-size image ∞ σn d−pexp(−Q/RT), where Image Full-size image is the strain rate, σ is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n not, vert, similar 3 and p not, vert, similar 1, and n not, vert, similar 2 and p not, vert, similar 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of not, vert, similar 550 kJ mol−1. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n not, vert, similar 2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n not, vert, similar 3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n not, vert, similar 2 and n not, vert, similar 3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To circumvent the practical difficulties in research on tropical rainforest lianas in their natural habitat due to prevailing weather conditions, dense camouflaging vegetation and problems in transporting equipment for experimental investigations, Entada pursaetha DC (syn. Entada scandens Benth., Leguminosae) was grown inside a research campus in a dry subtropical environment. A solitary genet has attained a gigantic size in 17 years, infesting crowns of semi-evergreen trees growing in an area roughly equivalent to 1.6 ha. It has used aerially formed, cable-like stolons for navigating and spreading its canopy across tree gaps. Some of its parts which had remained unseen in its natural habitat due to dense vegetation are described. The attained size of this liana in a climatically different environment raises the question as to why it is restricted to evergreen rainforests. Some research problems for which this liana will be useful are pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidation of the detailed structural features and sequence requirements for iv helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence. in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C-alpha coordinates has been developed and used to analyze the structures of long cu helices (number of residues greater than or equal to 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank, Ail long a helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins, The distribution and statistical propensities of individual amino acids to occur in long alpha heices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices, The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.