101 resultados para ammassi galassie aloni relitti radio cluster
Resumo:
We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.
Resumo:
We present the results on the distribution and kinematics of HI gas with higher sensitivity and in one case of higher spectral resolution as well than reported earlier, of three irregular galaxies CGCG 097073, 097079 and 097087 (UGC 06697) in the cluster Abell 1367. These galaxies are known to exhibit long (50 - 75 kpc) tails of radio continuum and optical emission lines (H alpha) pointing away from the cluster centre and arcs of starformation on the opposite sides of the tails, These features as well as the HI properties, with two of the galaxies (CGCG 097073 and 097079) exhibiting sharper gradients in HI intensity on the side of the tails, are consistent with the HI gas being affected by the ram pressure of the intracluster medium. However the HI emission in all the three galaxies extends to much smaller distances than the radio-continuum and H alpha tails, and are possibly still bound to the parent galaxies. Approximately 20 - 30 per cent of the HI mass is seen to accumulate on the downstream side due to the effects of ram pressure.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
A cluster model of the glass transition has been developed, treating the relative size of the cluster as an order parameter. The model accounts for some of the features of the glass transition.
Resumo:
Principal component analysis is applied to derive patterns of temporal variation of the rainfall at fifty-three stations in peninsular India. The location of the stations in the coordinate space determined by the amplitudes of the two leading eigenvectors is used to delineate them into eight clusters. The clusters obtained seem to be stable with respect to variations in the grid of stations used. Stations within any cluster occur in geographically contiguous areas.
Resumo:
Based on maps of the extragalactic radio sources Cyg A, Her A, Cen A, 3C 277.3 and others, arguments are given that the twin-jets from the respective active galactic nucleus ram their channels repeatedly through thin, massive shells. The jets are thereby temporarily choked and blow radio bubbles. Warm shell matter in the cocoon shows up radio-dark through electron-scattering.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
The effect of pressure on the conductivity of fast ion conducting AgI-Ag2O-MoO3 glasses has been investigated down to 150 K. The observed variation of conductivities appears to support the application of cluster model to the ionic glasses.
Resumo:
The structure of real glasses has been considered to be microheterogeneous, composed of clusters and connective tissue. Particles in the cluster are assumed to be highly correlated in positions. The tissue is considered to have a truly amorphous structure with its particles vibrating in highly anharmonic potentials. Glass transition is recognized as corresponding to the melting of clusters. A simple mathematical model has been developed which accounts for various known features associated with glass transition, such as range of glass transition temperature,T g, variation ofT g with pressure, etc. Expressions for configurational thermodynamic properties and transport properties of glass forming systems are derived from the model. The relevence and limitations of the model are also discussed.
Resumo:
Reaction of 2-pyridinecarboxaldehyde [(Py)CHO] with Cu(NO3)2·2.5H2O in the presence of 4-aminopyridine and NaN3 in MeOH lead to an incomplete double-cubane [Cu4{PyCH(O)(OMe)}4(N3)4] (1) in 87% isolated yield, representing a rare type of metal cluster containing bridging hemiacetalate ligand [pyCH(O)(OMe)]−1 which was characterized by single crystal structure analysis and variable temperature magnetic behavior.
Resumo:
A simple semiempirical quantum chemical approach (Extended Huckel Theory) is shown to give a reasonable description of the electronic structural aspects of chemisorption on the mercury model surface. Chemisorptive interaction of alkali metal atoms and cations, halogen atoms and anions, and water molecules with a charge-neutralized hexagonal close-packed cluster of seven Hg atoms is studied. Adsorption of H, C, N and O atoms on the same model cluster is studied for comparison with earlier work. Chemisorption energies, charge transfer, interaction distance and hydration effects are discussed and compared with experimental results where available.
Resumo:
A general expression for the Mössbauer lineshape in the presence of a radio frequency field is derived. As an example the effect of the rf field on Fe57 nuclei is discussed for a situation where the 3/2 sublevel of 14.4 keV state of Fe57 is selectively populated. At resonance, both the diagonal and non-diagonal matrix elements contribute to the correlation function. As a result, in addition to a slight rf induced distortion of the main Mössbauer line. additional transition lines are obtained. Thus the present calculation supports the experimental observations of Heiman et al.
Resumo:
A linear excitation of electromagnetic modes at frequencies (n + ı89 in a plasma through which two electron beams are contra-streaming along the magnetic field is investigated. This may be a source of the observed {cote emissions at auroral latitudes.
Resumo:
The paper furnishes a review and air ovendepr "f radio noise *om lightning as rr so~irce of interference to analogue and digital Corn?tunicatioiz. The parameters of fhe different fornls < f, noise necessary .for pssessigth e interfering effect of the rloise are described. 4railublr irfjrncroiun thrr tndevstor71zs, thunder-clouds, convecrion cells and lightning are er ieveadn d their liizitatimsp ointed oui. Thew fol101r.s a descripiicn of how the source, popugafiona nd receiver chaacteristidse termine the sfrticture qf a/rnosplro.ic noise as receiwd at a point of observation. The tratrrral unit for this noise i.s the mise burst rtrising from o w complete lightning.flas4. The pmuneters of the nrise birrst as a 11.hole and its structure ctetennine the inrqfflrrence enrirnniient. A hisforic reriel$. qf t2sophericii oke .studies sho1(5 that it i. wrreirt(v of importance oldy in thc ropicarl egions of' the wr ldf i>rs hichf hc neailable data are wry defective. New data are ficnrished. The contribution of atmospheric noise for backgrouzd interference even in remote places ,for r.adicj astronomy at VHF is firrnished. The imporlance of aimcspizeric nctise cceurring ;vporadiea@ in high values fur slzort inier.als at VHF and higher frequencies in the tropics is brought out.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.