51 resultados para allergen components
Resumo:
Seafood allergy is often encountered on ingestion of crustaceans such as shrimp, lobster, crab, and crayfish (1). On eating cooked shrimp, sensitive individuals experience a wide spectrum of reactions ranging from abdominal discomfort to anaphylaxis. The presence of cross-reacting heat-stable allergens in crustacean food was first recognized by Hoffman et al. (2) and Lehrer et al. (3). Subsequently, the major allergen was isolated and characterized from the shrimp species Paneaus indicus (Pen i 1) (4) and I? aztecm (Pen a 1) (5). Pen i 1 (originally designated Sa-TI) and Pen a 1, with mol. mass of 34 and 36 kDa, respectively, contain 301 and 312 amino-acid residues with a predominance of gluta- mate/glutamine and asparatate/asparagine.
Resumo:
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Resumo:
Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.
Resumo:
his paper describes an improved microtiter solid-phase enzyme immunoassay for the determination of total and allergen-specific human IgE. This assay technique is unique in its use of the avidin-biotin interaction to increase sensitivity. The avidin-biotin microtiter enzyme-linked immunosorbant assay (AB-microELISA) was performed in polyvinyl chloride microtiter plates using biotinylated anti-IgE and horseradish peroxidase (HRP)-avidin conjugate. This AB-microELISA technique enabled the quantitation of human serum IgE in the range of 0.1–5 ng/ml (10–500 pg/test) in less than 3 h. Total serum IgE, whether measured by the AB-microELISA or the paper radioimmunosorbant test (PRIST) was similar (correlation coefficient, r = 0.92). Further, the presence or absence of positive skin tests to 7 specific allergens determined in serum donors generally agreed with the presence or absence of allergen-specific IgE in their sera as measured by the AB-microELISA. The quantity of short ragweed allergen-specific IgE as determined by the AB-microELISA agreed with values obtained by the radioimmunosorbant test (RAST) (correlation coefficient, r = 0.89). No significant interference by ragweed-specific IgG (blocking antibody) was observed in the quantitation of allergen-specific IgE. The AB-microELISA is not only rapid and inexpensive, but also more sensitive than other published ELISA procedures and comparable to solid-phase radioimmunoassays in the quantitation of total and allergen-specific IgE.
Resumo:
Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.
Resumo:
Anti-deoxyadenylate antibodies were produced in rabbits by injecting a conjugate of deoxyadenosine 5′-phosphate with bovine serum albumin. The antisera, as analyzed by double diffusion in agar and the quantitative precipitin reaction, showed hapten-specific antibodies. The specific interaction between [3H]deoxyadenylate and antiserum was studied by a sensitive nitrocellulose membrane-binding assay. The specificity of the antibodies was analyzed by measuring the effectiveness of other nucleotides or derivatives to inhibit the hapten-antibody binding. The requirements for recognition by the antibody sites were studied by using a series of naturally occurring nucleic acid components as well as some synthetic derivatives as inhibitors. The antibodies were found to show a high degree of specificity for the whole nucleotide, the base, sugar and phosphate playing almost equally important roles. There was cross reactivity with other mononucleotides, although of a low order. The antibodies were able to react with DNA and tRNA.
Resumo:
It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.
Resumo:
The effect of aqueous pyridine on a hapten—antihapten system was investigated by the quantitative precipitin reaction and by the membrane filtration method. It was found that dilute solutions of pyridine inhibited the reaction between isopentenyladenosine and its antiserum. Other solvents examined were less effective. The effect of pyridine was reversible at concentrations where complete inhibition occurred, thus indicating its use for the dissociation of antigen—antibody complexes. The inhibitory effect of pyridine was exploited in a single-step purification method for anti—isopentenyladenosine and antideoxy-adenylate antibodies. In addition, generally applicable methods for linking nucleosides and nucleotides to aminoethyl-Sepharose are described.
Resumo:
The effect of aqueous pyridine on a hapten—antihapten system was investigated by the quantitative precipitin reaction and by the membrane filtration method. It was found that dilute solutions of pyridine inhibited the reaction between isopentenyladenosine and its antiserum. Other solvents examined were less effective. The effect of pyridine was reversible at concentrations where complete inhibition occurred, thus indicating its use for the dissociation of antigen—antibody complexes. The inhibitory effect of pyridine was exploited in a single-step purification method for anti—isopentenyladenosine and antideoxy-adenylate antibodies. In addition, generally applicable methods for linking nucleosides and nucleotides to aminoethyl-Sepharose are described.
Resumo:
S-Labeled nucleosides of E. coli tRNA and some of the derivatives of thionucleosides were separated on Bio-Gel P-2 and Sephadex G-10 columns employing buffers of low salt concentration and high pH.
Resumo:
Antibodies were raised in rabbits against the bovine serum albumin conjugate of dpApT. Analysis by double diffusion in agar gel and quantitative precipitation test showed the presence of antibodies specific to the hapten in the antisera. Quantitative data on the specificity of the antibodies were obtained by studying the inhibition of the binding of 3H-dpApT to the anti-sera by various nonradioactive mono- and oligonucleotides, using a nitrocellulose membrane binding assay. The antibodies were found to be highly specific for the dinucleotide sequence dpApT. The antibodies were able to bind to synthetic oligonucleotides containing the sequence dpApT and to denatured calf thymus DNA.
Resumo:
Antibodies to the deoxyribotrinucleotides dpApTpA and dpApApT were prepared by injecting the bovine serum albumin conjugates of the respective haptens in rabbits. The specificities of the antibodies were determined by estimating the inhibition of the binding of the tritiated haptens to the immunoglobulins by various nonradioactive mono- and oligonucleotides, using nitrocellulose membrane binding assay. Anti-dpApTpA and anti-dpApApT antisera were found to contain antibodies which were highly specific to the respective hapten sequence.
Resumo:
There is a growing interest in management of MSW through micro-treatment of organic fraction of municipal solid wastes (OFMSW) in many cities of India. The OFMSW fraction is high (> 80%) in many pockets within South Indian cities like Bangalore, Chikkamagalur, etc. and is largely represented by vegetable, fruit, packing and garden wastes. Among these, the last three have shown problems for easy decomposition. Fruit wastes are characterized by a large pectin supported fraction that decomposes quickly to organic acids (becomes pulpy) that eventually slow down anaerobic and aerobic decomposition processes. Paper fraction (newsprint and photocopying paper) as well as paddy straw (packing), bagasse (from cane juice stalls) and tree leaf litter (typical garden waste and street sweepings) are found in reasonably large proportions in MSW. These decompose slowly due to poor nutrients or physical state. We have examined the suitability of these substrates for micro-composting in plastic bins by tracking decomposition pattern and physical changes. It was found that fruit wastes decompose rapidly to produce organic acids and large leachate fraction such that it may need to be mixed with leachate absorbing materials (dry wastes) for good composting. Leaf litter, paddy straw and bagasse decompose to the tune of 90, 68 and 60% VS and are suitable for composting micro-treatment. Paper fractions even when augmented with 10% leaf compost failed to show appreciable decomposition in 50 days. All these feedstocks were found to have good biological methane potential (BMP) and showed promise for conversion to biogas under a mixed feed operation. Suitability of this approach was verified by operating a plug-flow type anaerobic digester where only leaf litter gathered nearby (as street sweepings) was used as feedstock. Here only a third of the BMP was realized at this scale (0.18 m(3) biogas/kg VS 0.55 m(3)/kg in BMP). We conclude that anaerobic digestion in plug-flow like digesters appear a more suitable micro-treatment option (2-10 kg VS/day) because in addition to compost it also produces biogas for domestic use nearby.
Resumo:
Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.
Resumo:
A study of the component(s) in egg yolk responsible for gelation of yolk on freezing and thawing has shown that granule-free yolk plasma, obtained by high-speed centrifugation of yolk, has the capacity to gel. As with the whole yolk, gelation of yolk plasma on freezing and thawing could be inhibited by additives such as sugars, sodium chloride, proteolytic enzymes, and phospholipase-A. Phospholipase-C, which induces gelation of whole yolk at room temperature, has a similar effect on yolk plasma. Yolk plasma has been separated into aggregating (gelling) and soluble fractions by delipidation, using formic acid. Each of these fractions consists of three or four protein components, as observed by gel filtration, ultracentrifugation, and agar electrophoresis. The proteins are glycoproteins and contain bound hexoses, hexosamine, and sialic acid. The gelation of yolk has been attributed to the interactions between protein molecules following disruption of lipid-protein bonds.