31 resultados para accelerated erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multistress aging of outdoor composite polymeric insulators continues to be a topic of interest for power transmission research community. Aging due to dry conditions alone at elevated temperatures and electric stress in the presence of UV radiation environment probably has not been explored. This paper deals with long-term accelerated multistress aging under the above conditions on full-scale 11 kV distribution class composite silicone rubber insulators. To evaluate the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they were subjected to accelerated aging in a specially designed multistress-aging chamber for 12000 hours. Chemical, physical and electrical changes due to degradation have been assessed using various techniques. It has been found that the content of low molecular weight molecules and hydrophobicity reduced significantly. Also, due to oxidation and aging there is appreciable increase in surface roughness and weight percentage of oxygen. Study is under progress and only intermediate results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the problems associated with outdoor polymeric insulators is tracking and erosion of the weathershed which can directly influence the reliability of the power system. Flame retardants are added to the base material to enhance its tracking and erosion resistance. Hydroxide fillers are regarded as the best flame retardants. This paper deals with studies related to nano - sized magnesium dihydroxide (MDH) and micron-sized Alumina Trihydrate (ATH) fillers as flame retardants in RTV silicone rubber. Tracking and erosion resistance studies were carried out on MDH and ATH silicone rubber composites using an inclined plane tracking and erosion (IPT) resistance tester. The MDH filled (5% by wt) composites performed much better than ATH composites in terms of eroded mass, depth of erosion, width and length of erosion. The eroded mass of MDH composite is 49.8 % that of ATH composite which can be attributed to high surface area and higher thermal stability of MDH nanofillers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results pertaining to the initiation, dynamics and mechanism of cavitation erosion on poly(methyl methacrylate) specimens tested in a rotating disk device are described in detail. Erosion normally starts at the location nearest to the center of rotation (CR). As the exposure time to cavitation increases, additional erosion areas or sites appear away from the CR and secondary erosion (induced by eroded pits) spreads upstream and merges with the main pit. The microcracks increase in density towards the end of the incubation period and transform into macrocracks in most cases. A study of light optical photographs and scanning electron micrographs of the eroded area shows that material particles are removed from the network of cracks because of crack joining and pits indicate particle debris. Optical degradation (loss of transmittance) is observed to be greater on the back of the specimen than on the front.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erosion resistance of pressed soil blocks used for wall construction is discussed. The spray erosion test using a standardized shower spray is discussed. Spray erosion behaviour of pressed soil blocks made out of five different soils is presented. Results of laboratory and field tests are compared. Effect of clay content of the soil and density of the pressed soil block on erosion are discussed. Also the effect of water-proof coatings on erosion of soil blocks is presented. Erosion resistance of soil blocks stabilized with organic (jaggery syrup and starch) or inorganic binders is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the normalized correlations between the incubation period tc and the properties of various materials tested in a rotating disk device indicates that, at very high intensities, the strength properties influence the duration of tc. The analysis of extensive data from other laboratories for cavitation and liquid impingement erosion also indicates that, while both energy and strength properties influence the duration of tc, the latter ones predominate for a majority of cases. A fatigue-type failure occurs during tc. For estimating the time required to pierce a metallic specimen in a rotating device a relationship tp = 160 tc0.44 is proposed. A detailed study of normalized correlations between erosion resistance (inverse of erosion rate) and tc values of different materials tested in the rotating disk shows that correlations are good. Analysis of data from eight other investigators clearly points out the validity and the usefulness of this type of prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean flow development in an initially turbulent boundary layer subjected to a large favourable pressure gradient beginning at a point x0 is examined through analyses expected a priori to be valid on either side of relaminarization. The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds stresses have by definition no significant effect on the mean flow, is described by an asymptotic theory constructed for large values of a pressure-gradient parameter Λ, scaled on a characteristic Reynolds stress gradient. The limiting flow consists of an inner laminar boundary layer and a matching inviscid (but rotational) outer layer. There is consequently no entrainment to lowest order in Λ−1, and the boundary layer thins down to conserve outer vorticity. In fact, the predictions of the theory for the common measures of boundary-layer thickness are in excellent agreement with experimental results, almost all the way from x0. On the other hand the development of wall parameters like the skin friction suggests the presence of a short bubble-shaped reverse-transitional region on the wall, where neither turbulent nor quasi-laminar calculations are valid. The random velocity fluctuations inherited from the original turbulence decay with distance, in the inner layer, according to inverse-power laws characteristic of quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence that the dominant physical mechanism is a rapid distortion of the turbulence, with viscous and inertia forces playing a secondary role. All the observations available suggest that final retransition to turbulence quickly follows the onset of instability in the inner layer.It is concluded that reversion in highly accelerated flows is essentially due to domination of pressure forces over the slowly responding Reynolds stresses in an originally turbulent flow, accompanied by the generation of a new laminar boundary layer stabilized by the favourable pressure gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations of erosion resistances of materials tested in different equipment are reported. Analysis of the authors' data from rotating disk and venturi equipment indicates that there exists a good correlation between the erosion resistances of materials tested at different intensities. The study indicates that time effects on erosion are important in correlations of this type. The erosion resistances of materials tested in two different devices exhibit good correlations indicating a quantitative similarity between different forms of erosion. The investigations also show that the prediction of erosion resistances of materials in a field device may be made with the data from a laboratory device which may not fully reproduce the flow conditions in the field. These conclusions are also checked with data reported from other laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric outdoor insulators are being increasingly used for electrical power transmission and distribution in the recent years. One of the current topics of interest for the power transmission community is the aging of such outdoor polymeric insulators. A few research groups are carrying out aging studies at room temperature with wet period as an integral part of multistress aging cycle as specified by IEC standards. However, aging effect due to dry conditions alone at elevated temperatures and electric stress in the presence of radiation environment has probably not been explored. It is interesting to study and understand the insulator performance under dry conditions where wet periods are either rare or absent and to estimate the extent of aging caused by multiple stresses. This paper deals with the long-term accelerated multistress aging on full-scale 11 kV distribution class composite silicone rubber insulators. In order to assess the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they are subjected to accelerated aging in a specially designed multistress-aging chamber for 3800 hours. All the stresses are applied at an accelerated level. Using a data acquisition system developed for the work, leakage current has been monitored in LabVIEW environment. Chemical changes due to degradations have been studied using Energy Dispersive X-Ray analysis, Scanning Electron Microscope and Fourier transform Infrared Spectroscopy. Periodically different parameters like low molecular weight (LMW) molecular content, hydrophobicity, leakage current and surface morphology were monitored. The aging study is under progress and only intermediate results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogeochemical and hydrological cycles are currently studied on a small experimental forested watershed (4.5 km(2)) in the semi-humid South India. This paper presents one of the first data referring to the distribution and dynamics of a widespread red soil (Ferralsols and Chromic Luvisols) and black soil (Vertisols and Vertic intergrades) cover, and its possible relationship with the recent development of the erosion process. The soil map was established from the observation of isolated soil profiles and toposequences, and surveys of soil electromagnetic conductivity (EM31, Geonics Ltd), lithology and vegetation. The distribution of the different parts of the soil cover in relation to each other was used to establish the dynamics and chronological order of formation. Results indicate that both topography and lithology (gneiss and amphibolite) have influenced the distribution of the soils. At the downslope, the following parts of the soil covers were distinguished: i) red soil system, ii) black soil system, iii) bleached horizon at the top of the black soil and iv) bleached sandy saprolite at the base of the black soil. The red soil is currently transforming into black soil and the transformation front is moving upslope. In the bottom part of the slope, the chronology appears to be the following: black soil > bleached horizon at the top of the black soil > streambed > bleached horizon below the black soil. It appears that the development of the drainage network is a recent process, which was guided by the presence of thin black soil with a vertic horizon less than 2 in deep. Three distinctive types of erosional landforms have been identified: 1. rotational slips (Type 1); 2. a seepage erosion (Type 2) at the top of the black soil profile; 3. A combination of earthflow and sliding in the non-cohesive saprolite of the gneiss occurs at midslope (Type 3). Types 1 and 2 erosion are mainly occurring downslope and are always located at the intersection between the streambed and the red soil-black soil contact. Neutron probe monitoring, along an area vulnerable to erosion types 1 and 2, indicates that rotational slips are caused by a temporary watertable at the base of the black soil and within the sandy bleached saprolite, which behaves as a plane of weakness. The watertable is induced by the ephemeral watercourse. Erosion type 2 is caused by seepage of a perched watertable, which occurs after swelling and closing of the cracks of the vertic clay horizon and within a light textured and bleached horizon at the top of black soil. Type 3 erosion is not related to the red soil-black soil system but is caused by the seasonal seepage of saturated throughflow in the sandy saprolite of the gneiss occurring at midslope. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Minkowski space, an accelerated reference frame may be defined as one that is related to an inertial frame by a sequence of instantaneous Lorentz transformations. Such an accelerated observer sees a causal horizon, and the quantum vacuum of the inertial observer appears thermal to the accelerated observer, also known as the Unruh effect. We argue that an accelerating frame may be similarly defined (i.e. as a sequence of instantaneous Lorentz transformations) in noncommutative Moyal spacetime, and discuss the twisted quantum field theory appropriate for such an accelerated observer. Our analysis shows that there are several new features in the case of noncommutative spacetime: chiral massless fields in (1 + 1) dimensions have a qualitatively different behavior compared to massive fields. In addition, the vacuum of the inertial observer is no longer an equilibrium thermal state of the accelerating observer, and the Bose-Einstein distribution acquires.-dependent corrections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.