36 resultados para Wool shearing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In closed-die forging the flash geometry should be such as to ensure that the cavity is completely filled just as the two dies come into contact at the parting plane. If metal is caused to extrude through the flash gap as the dies approach the point of contact — a practice generally resorted to as a means of ensuring complete filling — dies are unnecessarily stressed in a high-stress regime (as the flash is quite thin and possibly cooled by then), which reduces the die life and unnecessarily increases the energy requirement of the operation. It is therefore necessary to carefully determine the dimensions of the flash land and flash thickness — the two parameters, apart from friction at the land, which control the lateral flow. The dimensions should be such that the flow into the longitudinal cavity is controlled throughout the operation, ensuring complete filling just as the dies touch at the parting plane. The design of the flash must be related to the shape and size of the forging cavity as the control of flow has to be exercised throughout the operation: it is possible to do this if the mechanics of how the lateral extrusion into the flash takes place is understood for specific cavity shapes and sizes. The work reported here is part of an ongoing programme investigating flow in closed-die forging. A simple closed shape (no longitudinal flow) which may correspond to the last stages of a real forging operation is analysed using the stress equilibrium approach. Metal from the cavity (flange) flows into the flash by shearing in the cavity in one of the three modes considered here: for a given cavity the mode with the least energy requirement is assumed to be the most realistic. On this basis a map has been developed which, given the depth and width of the cavity as well as the flash thickness, will tell the designer of the most likely mode (of the three modes considered) in which metal in the cavity will shear and then flow into the flash gap. The results of limited set of experiments, reported herein, validate this method of selecting the optimum model of flow into the flash gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the simple theory of flexure of beams, the slope, bending moment, shearing force, load and other quantities are functions of a derivative of y with respect to x. It is shown that the elastic curve of a transversely loaded beam can be represented by the Maclaurin series. Substitution of the values of the derivatives gives a direct solution of beam problems. In this paper the method is applied to derive the Theorem or three moments and slope deflection equations. The method is extended to the solution of a rigid portal frame. Finally the method is applied to deduce results on which the moment distribution method of analyzing rigid frames is based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical microscopy has been employed to observe the slip lines in deformed Al-2% Ge alloy samples. Slip lines have been observed in the as-quenched, partially-aged, fully-aged and over-aged states. The lines tend to traverse fairly straight paths in the case of quenched and partially-aged conditions. Fully-aged samples also reveal such straight running lines when tested at low-temperatures. However, the density of the lines generally decreases as the peak-aged state is approached. These results are in agreement with the idea that thermally activated shearing of the precipitates is occurring in the alloy aged up to peak-hardness. The irregular lines for the over-aged specimens support the view that the moving dislocations by-pass the precipitates during deformation. The influence of test-temperature on the appearance of slip traces has been briefly examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative and quantitative assessment of the fungal flora of rice field soils yielded 102 species of fungi belonging to 44 genera, when dilution plate, soil plate, root-washing and baiting techniques were employed. The order of efficacy of the methods used was: root-washing > soil plate > dilution plate > baiting. Baiting method, used specifically to isolate aquatic and keratinophilic fungi from soils was studied in detail with reference to the former. Qualitatively, corn leaf bait was the most efficient one while pine pollens and hemp seeds were least efficient. A semi-quantitative method was employed to study the statistically significant differences among the different factors used. Among the keratinophilic baits,viz., human hair, fowl’s feather and wool, wool bait was least efficient. The results of this investigation are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils in and and semi-arid zones undergoes volume changes due to wetting. Depending upon the type of clay minerals present, degree of saturation, externally applied load and bonding, the fine grained soils either swells or compresses. One of the parameter that affects the volume change behaviour is the primary clay mineral present in their clay size fraction. A simple method of identifying the same has been presented. It has been brought out that in an expansive unsaturated undisturbed soil, the diffuse double layer repulsion, the stress state and the bonding play significant role in their volume change behaviour. In non-expansive fine grained unsaturated undisturbed soils, the shearing resistance at particle level (including the matrix suction and bonding) and fabric play a significant role in influencing the volume change behaviour. While both the mechanism co-exist, one of them play a dominant role depending upon the primary clay mineral is swelling or non swelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micropolar fluids like Newtonian and Non-Newtonian fluids cannot sustain a simple shearing motion, wherein only one component of velocity is present. They exhibit both primary and secondary motions when the boundaries are subject to slow rotations. The primary motion, as in Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., resembles that of Newtonian fluid for slow steady rotation. We further notice that the micro-rotation becomes identically equal to the vorticity present in the fluid and the condition b) of "Wall vorticity" can alone be satisfied at the boundaries. As regards, the secondary motion, we notice that it can be determined by the above procedure for a special class of fluids, namely that for which j0(n2-n3)=4 n3/l2. Moreover for this class of fluids, the micro-rotation is identical with the vorticity of the fluid everywhere. Also the stream function for the secondary flow is identical with that for the Newtonian fluid with a suitable definition of the Reynolds number. In contrast with the Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., this class of micropolar fluids does not show separation. This is in conformity with the statement of Condiff and Dahler (3) that in any steady flow, internal spin matches the vorticity everywhere provided that (i) spin boundary conditions are satisfied, (ii) body torques and non-conservative body forces are absent, and (iii) inertial and spin-inertial terms are either negligible or vanish identically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report measurements of the wall stress in a granular material sheared in a cylindrical Couette cell, as a function of the distance from the free surface. Our results shows that when the material is static, all components of the stress saturate to constant values within a short distance from the free surface, in conformity with earlier experiments and theoretical predictions. When the material is sheared by rotating the inner cylinder at a constant rate, the stresses are remarkably altered. The radial normal stress does not saturate, and increases even more rapidly with depth than the linear hydrostatic pressure profile. The axial shear stress changes sign on shearing, and its magnitude increases with depth. These results are discussed in the context of the predictions of the classical and Cosserat plasticity theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cam-clay models, or any other plasticity-based models, do not make distinction between the mode of stress transfer in coarse- and fine-grained soils. An examination of behavior at micro level in fine-grained soils, from the consideration of load transfer through physico-chemical interactions, suggests that the plastic compressions result from the grouping of particles into larger clusters and that elastic compressions result from the decrease in the spacing between particles. During shearing, these clusters gradually get dismembered, releasing the locked-in energy. The effect of such dismembering of clusters can be easily incorporated into the original Cam-clay model, and better predictions can be obtained with the associated flow rule, itself, for both normally and over consolidated states. The method essentially defines the hardening of yield surfaces with internal changes in the spacing between particles, instead of changes in externally observed plastic strains. The approach describes the behavior of over consolidated soils as yielding along successfively hardening Roscoe surfaces with gradually varying plastic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of reinforced earth structures depends on the mobilization of interfacial shearing resistance between soil and reinforcement. This criterion typically eliminates the use of fine-grained soil as a backfill material in reinforced earth structures. Considering the distribution of induced interfacial shear stress in soil around the surface of the reinforcement, it has been shown that only a thin zone of frictional material around the reinforcement is required to mobilize almost full interfacial shearing resistance of sand. Six series of pullout tests have been conducted, with different types of reinforcement, to study the effect of thickness of sand (frictional material) around the reinforcement on the pullout resistance. Sawdust and kaolin clay have been used as bulk backfill material, providing the soil with negligible friction. With low-friction-strength soil as bulk material, a 15-mm thickness of sand around the reinforcement is required to increase the interfacial shearing resistance to that with sand as the bulk material. With this new technique, low-frictional fine-grained soils can be used as bulk backfill material in reinforced earth constructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.