215 resultados para Weighted Lebesgue Space
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.
Resumo:
We study the Segal-Bargmann transform on M(2). The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer's type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of M(2). We also prove a Paley-Wiener theorem for the inverse Fourier transform.
Resumo:
We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.
Resumo:
This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.
Resumo:
This work grew out of an attempt to understand a conjectural remark made by Professor Kyoji Saito to the author about a possible link between the Fox-calculus description of the symplectic structure on the moduli space of representations of the fundamental group of surfaces into a Lie group and pairs of mutually dual sets of generators of the fundamental group. In fact in his paper [3] , Prof. Kyoji Saito gives an explicit description of the system of dual generators of the fundamental group.
Resumo:
For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.
Resumo:
The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.
Resumo:
Abstract-To detect errors in decision tables one needs to decide whether a given set of constraints is feasible or not. This paper describes an algorithm to do so when the constraints are linear in variables that take only integer values. Decision tables with such constraints occur frequently in business data processing and in nonnumeric applications. The aim of the algorithm is to exploit. the abundance of very simple constraints that occur in typical decision table contexts. Essentially, the algorithm is a backtrack procedure where the the solution space is pruned by using the set of simple constrains. After some simplications, the simple constraints are captured in an acyclic directed graph with weighted edges. Further, only those partial vectors are considered from extension which can be extended to assignments that will at least satisfy the simple constraints. This is how pruning of the solution space is achieved. For every partial assignment considered, the graph representation of the simple constraints provides a lower bound for each variable which is not yet assigned a value. These lower bounds play a vital role in the algorithm and they are obtained in an efficient manner by updating older lower bounds. Our present algorithm also incorporates an idea by which it can be checked whether or not an (m - 2)-ary vector can be extended to a solution vector of m components, thereby backtracking is reduced by one component.
Resumo:
The properties of the manifold of a Lie groupG, fibered by the cosets of a sub-groupH, are exploited to obtain a geometrical description of gauge theories in space-timeG/H. Gauge potentials and matter fields are pullbacks of equivariant fields onG. Our concept of a connection is more restricted than that in the similar scheme of Ne'eman and Regge, so that its degrees of freedom are just those of a set of gauge potentials forG, onG/H, with no redundant components. The ldquotranslationalrdquo gauge potentials give rise in a natural way to a nonsingular tetrad onG/H. The underlying groupG to be gauged is the groupG of left translations on the manifoldG and is associated with a ldquotrivialrdquo connection, namely the Maurer-Cartan form. Gauge transformations are all those diffeomorphisms onG that preserve the fiber-bundle structure.
Resumo:
This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.