67 resultados para WADA BASIN BOUNDARIES
Resumo:
A key problem in helicopter aeroelastic analysis is the enormous computational time required for a numerical solution of the nonlinear system of algebraic equations required for trim, particularly when free wake models are used. Trim requires calculation of the main rotor and tail rotor controls and the vehicle attitude which leads to the six steady forces and moments about the helicopter center of gravity to be zero. An appropriate initial estimate of the trim state is needed for successful helicopter trim. This study aims to determine the control inputs that can have considerable effect on the convergence of trim solution in the aeroelastic analysis of helicopter rotors by investigating the basin of attraction of the nonlinear equations (set of initial guess points from which the nonlinear equations converge). It is illustrated that the three main rotor pitch controls of collective pitch, longitudinal cyclic pitch and lateral cyclic pitch have a significant contribution to the convergence of the trim solution. Trajectories of the Newton iterates are shown and some ideas for accelerating the convergence of a trim solution in the aeroelastic analysis of helicopters are proposed. It is found that the basins of attraction can have fractal boundaries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via competing behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geometry: the warp factors still exhibit asymptotic integer power law behaviors, but the powers can be different from one. As we cross over one of these boundaries ('generalized subttractors'), the solutions turn unstable and start blowing up at finite radius and lose their asymptotic region. Our results are fully analytic, but we also solve a simpler theory where the attraction basin is lower dimensional and easy to visualize, and present a simple picture that illustrates many of the basic ideas.
Resumo:
In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min
Resumo:
It is shown that a leaky aquifer model can be used for well field analysis in hard rock areas, treating the upper weathered and clayey layers as a composite unconfined aquitard overlying a deeper fractured aquifer. Two long-duration pump test studies are reported in granitic and schist regions in the Vedavati river basin. The validity of simplifications in the analytical solution is verified by finite difference computations.
Resumo:
An estimate of the irrigation potential over and above the existing utilization was made based on the ground water potential in the Vedavati river basin. The estimate is based on assumed crops and cropping patterns as per existing practice in the various taluks of the basin. Irrigation potential was estimated talukwise based on the available ground water potential identified from the simulation study. It is estimated that 84,100 hectares of additional land can be brought under irrigation from ground water in the entire basin.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
A survey of amphibian mortality on roads was carried out in the Sharavathi river basin in the central Western Ghats. Road kills in three different land use areas: agricultural fields, water bodies and forests were recorded for four days along three 100m stretches in each type of area. One-hundred-and-forty-four individuals belonging to two orders, eight families, 11 genera and 13 species were recorded in the survey. Kills/km observed were: in forest 55, agricultural fields 38 and water bodies 27, for an overall average of 40 kills/km. Kill species compositions varied significantly between land use areas, but not overall kill rates.
Resumo:
In this paper a method to determine the internal and external boundaries of planar workspaces, represented with an ordered set of points, is presented. The sequence of points are grouped and can be interpreted to form a sequence of curves. Three successive curves are used for determining the instantaneous center of rotation for the second one of them. The two extremal points on the curve with respect to the instantaneous center are recognized as singular points. The chronological ordering of these singular points is used to generate the two envelope curves, which are potentially intersecting. Methods have been presented in the paper for the determination of the workspace boundary from the envelope curves. Strategies to deal with the manipulators with joint limits and various degenerate situations have also been discussed. The computational steps being completely geometric, the method does not require the knowledge about the manipulator's kinematics. Hence, it can be used for the workspace of arbitrary planar manipulators. A number of illustrative examples demonstrate the efficacy of the proposed method.
Resumo:
[1] We have compared the spectral aerosol optical depth (AOD, tau lambda) and aerosol fine mode fraction (AFMF) of Collection 004 (C004) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) on board National Aeronautics and Space Administration's (NASA) Terra and Aqua platforms with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), India for the period 2001-2005. The spatially-averaged (0.5 degrees x 0.5 degrees centered at AERONET sunphotometer) MODIS Level-2 aerosol parameters (10 km at nadir) were compared with the temporally averaged AERONET-measured AOD (within +/- 30 minutes of MODIS overpass). We found that MODIS systematically overestimated AOD during the pre-monsoon season (March to June, known to be influenced by dust aerosols). The errors in AOD at 0.66 mu m were correlated with the apparent reflectance at 2.1 mu m (rho*(2.1)) which MODIS C004 uses to estimate the surface reflectance in the visible channels (rho(0.47) = rho*(2.1)/ 4, rho(0.66) = rho*(2.1)/ 2). The large errors in AOD (Delta tau(0.66) > 0.3) are found to be associated with the higher values of rho*(2.1) (0.18 to 0.25), where the uncertainty in the ratios of reflectance is large (Delta rho(0.66) +/- 0.04, Delta rho(0.47) +/- 0.02). This could have resulted in lower surface reflectance, higher aerosol path radiance and thus lead to overestimation in AOD. While MODIS-derived AFMF has binary distribution (1 or 0) with too low (AFMF < 0.2) during dust-loading period, and similar to 1 for the rest of the retrievals, AERONET showed range of values (0.4 to 0.9). The errors in tau(0.66) were also high in the scattering angle range 110 degrees - 140 degrees, where the optical effects of nonspherical dust particles are different from that of spherical particles.
Resumo:
The local Fe ferromagnetic (FM) moment at the grain boundaries of a ceramic sample of Ca2FeReO6 double perovskite was investigated by means of x-ray magnetic circular dichroism spectroscopy at the Fe L-2,L-3 edges and compared to the overall bulk magnetization. We found that, at the grain boundaries, the Fe FM moments at H=5 T are much smaller than expected and that the MxH curve is harder than in the bulk magnetization. These results suggest a larger degree of Fe/Re antisite disorder at the grain boundaries of this sample, shedding light into the intriguing nonmetallic resistivity behavior despite the reported presence of free carriers. (c) 2007 American Institute of Physics.
Resumo:
A survey of amphibian mortality on roads was carried out in the Sharavathi river basin in the central Western Ghats. Road kills in three different land use areas: agricultural fields, water bodies and forests were recorded for four days along three 100m stretches in each type of area. One-hundred-and-forty-four individuals belonging to two orders, eight families, 11 genera and 13 species were recorded in the survey. Kills/km observed were: in forest 55, agricultural fields 38 and water bodies 27, for an overall average of 40 kills/km. Kill species compositions varied significantly between land use areas, but not overall kill rates.