150 resultados para Up-conversion
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.
Resumo:
A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.
Resumo:
A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.
Resumo:
Strategies for efficient start-up of a continuous process for biooxidation of refractory gold ore and concentrate obtained from Hutti, Gold Mines Limited (HGML), India are discussed in this work. The biooxidation of the concentrate at high pulp density (10%) with wild strain of Thiobacillus ferrooxidans isolated from HGML mines is characterized by significant lag phase (20 days) and incomplete oxidation (35%) even after prolonged operation (60 days). Two strategies, biooxidation with concentrate adapted cells and a step leaching strategy, in which the pulp density is progressively increased from 2% to 10% were considered and the latter resulted in efficient biooxidation of concentrate. Conversion of such a process from batch to continuous operation is shown to result in complete biooxidation of the concentrate and gold extraction efficiency in excess of 90%. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.
Resumo:
Advanced bus-clamping switching sequences, which employ an active vector twice in a subcycle, are used to reduce line current distortion and switching loss in a space vector modulated voltage source converter. This study evaluates minimum switching loss pulse width modulation (MSLPWM), which is a combination of such sequences, for static reactive power compensator (STATCOM) application. It is shown that MSLPWM results in a significant reduction in device loss over conventional space vector pulse width modulation. Experimental verification is presented at different power levels of up to 150 kVA.
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
In the education of physical sciences, the role of the laboratory cannot be overemphasised. It is the laboratory exercises which enable the student to assimilate the theoretical basis, verify the same through bench-top experiments, and internalize the subject discipline to acquire mastery of the same. However the resources essential to put together such an environment is substantial. As a result, the students go through a curriculum which is wanting in this respect. This paper presents a low cost alternative to impart such an experience to the student aimed at the subject of switched mode power conversion. The resources are based on an open source circuit simulator (Sequel) developed at IIT Mumbai, and inexpensive construction kits developed at IISc Bangalore. The Sequel programme developed by IIT Mumbai, is a circuit simulation program under linux operating system distributed free of charge. The construction kits developed at IISc Bangalore, is fully documented for anyone to assemble these circuit which minimal equipment such as soldering iron, multimeter, power supply etc. This paper puts together a simple forward dc to dc converter as a vehicle to introduce the programming under sequel to evaluate the transient performance and small signal dynamic model of the same. Bench tests on the assembled construction kit may be done by the student for study of operation, transient performance and closed loop stability margins etc.
Resumo:
The development of techniques for scaling up classifiers so that they can be applied to problems with large datasets of training examples is one of the objectives of data mining. Recently, AdaBoost has become popular among machine learning community thanks to its promising results across a variety of applications. However, training AdaBoost on large datasets is a major problem, especially when the dimensionality of the data is very high. This paper discusses the effect of high dimensionality on the training process of AdaBoost. Two preprocessing options to reduce dimensionality, namely the principal component analysis and random projection are briefly examined. Random projection subject to a probabilistic length preserving transformation is explored further as a computationally light preprocessing step. The experimental results obtained demonstrate the effectiveness of the proposed training process for handling high dimensional large datasets.
Resumo:
The participation of a multifunctional enzy(am sein - gle polypeptide with multiple catalytic activities (14)) has been demonstrated in the conversion of agmatine to putrescine in Lathyrus sativus seedlings. This enzyme (putrescine synthase) with inherent activities of agmatine iminohydrolase, putrescine transcarbamylase, ornithine transcarbamylase, and carbamate has been purified to homogeneity anhda s M, = 55,000.
Resumo:
Synephrinase, an enzyme catalyzing the conversion of (−)-synephrine into p-hydroxyphenylacetaldehyde and methylamine, was purified to apparent homogeneity from the cell-free extracts of Arthrobacter synephrinum grown on (±)-synephrine as the sole source of carbon and nitrogen. A 40-fold purification was sufficient to produce synephrinase that is apparently homogeneous as judged by native polyacrylamide gel electrophoresis and has a specific activity of 1.8 μmol product formed /min/mg protein. Thus, the enzyme is a relatively abundant enzyme, perhaps comprising as much as 2.5% of the total protein. The enzyme essentially required a sulfhydryl compound for its activity. Metal ions like Mg2+, Ca2+, and Mn2+ stimulated the enzyme activity. Metal chelating agents, thiol reagents, denaturing agents, and metal ions like Zn2+, Hg2+, Ag1+, and Cu2+ inhibited synephrinase activity. Apart from (−)-synephrine, the enzyme acted upon (±)-octopamine and β-methoxysynephrine. Molecular oxygen was not utilized during the course of the reaction. The molecular mass of the enzyme as determined by Sephadex G-200 chromatography, was around 156,000. The enzyme was made up of four identical subunits with a molecular mass of 42,000.
Resumo:
A convenient method for the conversion of electron rich benzylic hydrocarbons to carbonyl compounds is reported.
Resumo:
Three different algorithms are described for the conversion of Hensel codes to Farey rationals. The first algorithm is based on the trial and error factorization of the weight of a Hensel code, inversion and range test. The second algorithm is deterministic and uses a pair of different p-adic systems for simultaneous computation; from the resulting weights of the two different Hensel codes of the same rational, two equivalence classes of rationals are generated using the respective primitive roots. The intersection of these two equivalence classes uniquely identifies the rational. Both the above algorithms are exponential (in time and/or space).
Resumo:
In this paper, three parallel polygon scan conversion algorithms have been proposed, and their performance when executed on a shared bus architecture has been compared. It has been shown that the parallel algorithm that does not use edge coherence performs better than those that use edge coherence. Further, a multiprocessing architecture has been proposed to execute the parallel polygon scan conversion algorithms more efficiently than a single shared bus architecture.