114 resultados para Three-point bending
Resumo:
A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.
Resumo:
The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
A simple one dimensional inertial model is presented for transient response analysis of notched beams under impact, and extracting dynamic initiation toughness values. The model includes the effects of striker mass interactions, and contact deformations of the beam. Displacement time history of the striker mass is applied to the model as forcing function. The model is validated by comparison with the experimental investigation on ductile aluminium 6061 alloy and brittle polymer, PMMA.
Resumo:
Optimum design of dynamic fracture test rigs demands a thorough appreciation of beam vibration under impact. Analyses invariably presume rigid anvils, and neglect overhang effects. The beam response predicted analytically and numerically in this paper highlights the significant role of anvil rigidity and beam overhangs on the impact dynamics of three point bend (3PB) specimens.
Resumo:
Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two it-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.
Resumo:
The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
The tension-softening parameters for different concrete-concrete interfaces are determined using the bimaterial cracked hinge model. Beams of different sizes having a jointed interface between two different strengths of concrete are tested under three-point bending (TPB). The load versus crack mouth opening displacement (CMOD) results are used to obtain the stress-crack opening relation through an inverse analysis. In addition, the fracture energy, tensile strength, and modulus of elasticity are also computed from the inverse analysis. The fracture properties are used in the nonlinear fracture mechanics analysis of a concrete patch-repaired beam to determine its load-carrying capacity when repaired with concrete of different strengths.
Resumo:
This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.
Resumo:
In this article, the design and development of a Fiber Bragg Grating (FBG) based displacement sensor package for submicron level displacement measurements are presented. A linear shift of 12.12 nm in Bragg wavelength of the FBG sensor is obtained for a displacement of 6 mm with a calibration factor of 0.495 mu m/pm. Field trials have also been conducted by comparing the FBG displacement sensor package against a conventional dial gauge, on a five block masonry prism specimen loaded using three-point bending technique. The responses from both the sensors are in good agreement, up to the failure of the masonry prism. Furthermore, from the real-time displacement data recorded using FBG, it is possible to detect the time at which early creaks generated inside the body of the specimen which then prorogate to the surface to develop visible surface cracks; the respective load from the load cell can be obtained from the inflection (stress release point) in the displacement curve. Thus the developed FBG displacement sensor package can be used to detect failures in structures much earlier and to provide an adequate time to exercise necessary action, thereby avoiding the possible disaster.
Resumo:
Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.
Resumo:
Friction coefficient between a circular-disk periphery and V-block surface was determined by introducing the concept of isotropic point (IP) in isochromatic field of the disk under three-point symmetric loading. IP position on the symmetry axis depends on active coefficient of friction during experiment. We extend this work to asymmetric loading of circular disk in which case two frictional contact pairs out of three loading contacts, independently control the unconstrained IP location. Photoelastic experiment is conducted on particular case of asymmetric three-point loading of circular disk. Basics of digital image processing are used to extract few essential parameters from experimental image, particularly IP location. Analytical solution by Flamant for half plane with a concentrated load, is utilized to derive stress components for required loading configurations of the disk. IP is observed, in analytical simulations of three-point asymmetric normal loading, to move from vertical axis to the boundary along an ellipse-like curve. When friction is included in the analysis, IP approaches the center with increase in loading friction and it goes away with increase in support friction. With all these insights, using experimental IP information, friction angles at three contact pairs of circular disk under asymmetric loading, are determined.
Resumo:
An attempt is made to study the fracture behavior of ferrocement beams using J-integral and critical crack opening displacement approaches. Ferrocement beams with three different relative notch depths and different percentages of mesh reinforcement were tested in four-point bending (third-point loading). The experimental results were used to evaluate the apparent J-integral and CODc values. Results show that the apparent J-integral does not seem to follow any particular trend in variation with notch depth, but is sensitive to the increase of mesh reinforcement. Hence, the apparent J-integral appears to be a useful fracture criterion for ferrocement. The computed values of CODt are found to be dependent on the depth of notch and, thus, cannot possibly be considered as a suitable fracture criterion for ferrocement.