116 resultados para Temperature - Physiological effect
Resumo:
An increase in atmospheric carbon dioxide (CO2) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO2 using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO2, the radiative effect of CO2 causes mean surface air temperature over land to increase by 2.86 ± 0.02 K (± 1 standard error), whereas the physiological effects of CO2 on land plants alone causes air temperature over land to increase by 0.42 ± 0.02 K. Combined, these two effects cause a land surface warming of 3.33 ± 0.03 K. The radiative effect of doubling CO2 increases global runoff by 5.2 ± 0.6%, primarily by increasing precipitation over the continents. The physiological effect increases runoff by 8.4 ± 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 ± 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO2-radiative forcing, whereas relative humidity over land decreases in response to CO2-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO2 on land plants will increase global warming beyond that caused by the radiative effects of CO2.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
Increasing concentrations of atmospheric carbon dioxide (CO(2)) influence climate by suppressing canopy transpiration in addition to its well- known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO(2) concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO(2) levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO(2) levels implies that incremental warming associated with the physiological effect of CO(2) will not abate at higher CO(2) concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO(2) emissions.
Resumo:
Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A new method for the titrimetric determination of perchlorate has been developed, based on its reduction to chloride by iron(II) in a strong sulphuric acid medium at high temperature. The effect of variables, such as the sulphuric acid concentration, the temperature and the period of heating, on the extent of reduction has been studied and the optimal conditions for analytical determination of perehlorate derived.
Resumo:
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Resumo:
Study of laminar boundary layer in mixed convection from vertical plates is carried out. The surface temperature along the vertical plate is assumed to vary arbitrarily with vertical distance. Perturbation technique is used to solve the governing boundary layer equations. The differentials of the wall temperature are used as perturbation elements, which are functions of vertical distance, to obtain universal functions. The universal functions are valid for any type of vertical wall temperature variation. Heat transfer rates and fluid velocity inside the boundary layer can be expressed and calculated using these universal functions. Heat transfer rates are obtained for the special cases of power-law variation of the wall temperature. The effect of the governing parameter (Gr(y)/Re-y(2)) and the power index of the power-law wall temperature variation on heat transfer rates is studied. For the purpose of validation, the mixed convection results obtained by the present technique pertaining to the special cases of isothermal vertical wall are compared with those obtained by similarity analysis reported in literature, and the agreement is found to be good. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.
Resumo:
In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.
Resumo:
A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.
Effect of Temperature Variation on Sister Chromatid Exchange Frequency in Cultured Human Lymphocytes
Resumo:
The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.
Resumo:
Copper aluminum oxide films were prepared by direct current (dc) reactive magnetron sputtering under various substrate temperatures in the range of 303–648 K and systematically studied their physical properties. The physical properties of the films were strongly affected by the substrate temperature. The films formed at substrate temperatures <373 K were amorphous while those deposited at higher substrate temperatures (≥373 K) were polycrystalline in nature. The electrical properties of the films enhanced with substrate temperature due to the improved crystallinity. The Hall mobility of 9.4 cm2/V s and carrier concentration of 3.5 × 1017 cm−3 were obtained at the substrate temperature of 573 K. The optical band gap of the films decreased from 3.87 to 3.46 eV with the increase of substrate temperature from 373 to 573 K.
Resumo:
A study of the effect of N2 reservoir temperature on the small-signal gain in a downstream-mixing 16 μm CO2-N2 GDL is presented. It is shown that the small-signal gain decreases with the increase of N2 reservoir temperature. The conditions for reversing this trend are discussed and the results are presented in the form of graphs.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).