30 resultados para TENS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

in this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X=ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 degrees C recorded a remarkably high value of 7 x 10(-3) Omega(-1) cm(-1), higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At -20 degrees C, the ionic conductivity of (100 -x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 x 10(-5)-4.5 x 10(-4) Omega(-1) cm(-1), approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y -> 0 for LiClO4-SN to a maximum of 0.4MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well injection replenishes depleting water levels in a well field. Observation well water levels some distance away from the injection well are the indicators of the success of a well injection program. Simulation of the observation well response, located a few tens of meters from the injection well, is likely to be affected by the effects of nonhomogeneous medium, inclined initial water table, and aquifer clogging. Existing algorithms, such as the U.S. Geological Survey groundwater flow software MODFLOW, are capable of handling the first two conditions, whereas time-dependent clogging effects are yet to be introduced in the groundwater flow models. Elsewhere, aquifer clogging is extensively researched in theory of filtration; scope for its application in a well field is a potential research problem. In the present paper, coupling of one such filtration theory to MODFLOW is introduced. Simulation of clogging effects during “Hansol” well recharge in the parts of western India is found to be encouraging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper Nakagawa and Nishida [1989] have suggested that wavy motions of the neutral sheet can be generated by the Kelvin‐Helmholtz instability if the dawn‐dusk flow of only several tens of km/s is present. However, their mathematical analysis is based on the choice of particular magnetic field directions in the three regions consisting of north, south lobes and the neutral sheet. In an earlier paper Uberoi [1986] discussed the Kelvin‐Helmholtz instability of a similar structured plasma layer without any assumptions either on velocity field directions or on the magnetic field directions, thus pointing out the angle effect due to variation in magnetic field directions on the instability criterion. The relevance of these results to the problem of wavy motions of the neutral sheet are pointed out. In particular it is found that when the y‐component of the magnetic field in each lobe is taken into consideration the Kelvin‐Helmholtz instability can be exicted only when the dawn‐dusk flow is of several hundreds of km/s a order of ten higher than that arrived in the analysis by Nakagawa and Nishida [1989].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of Al?In, Al?Pb, and Zn?Pb have been prepared and characterized using rapid quenching techniques and the nature of superconducting transitions in them has been studied by resistivity measurements. The precipitated second phases (In and Pb) have particle sizes (d) of a few tens of nanometers such that ?0?d?dmin, where ?0 is the superconducting zero temperature coherence length and dmin is the minimum particle size that supports superconductivity. The onset of superconductivity generally starts in samples with d??0 and progressively other grains with d??0 become superconducting. We suggest that the proximity effect of the matrix plays a significant role. In an Al?In system, even with 40?wt.% In, the zero resistivity state is obtained at T?1.33 times the Tc of Al. But in Al?Pb and Zn?Pb, the zero resistivity state is obtained at T?4 and 5 times the Tc of Al and Zn with only 10�15 wt?% Pb, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community Climate System Model (CCSM) is a Multiple Program Multiple Data (MPMD) parallel global climate model comprising atmosphere, ocean, land, ice and coupler components. The simulations have a time-step of the order of tens of minutes and are typically performed for periods of the order of centuries. These climate simulations are highly computationally intensive and can take several days to weeks to complete on most of today’s multi-processor systems. ExecutingCCSM on grids could potentially lead to a significant reduction in simulation times due to the increase in number of processors. However, in order to obtain performance gains on grids, several challenges have to be met. In this work,we describe our load balancing efforts in CCSM to make it suitable for grid enabling.We also identify the various challenges in executing CCSM on grids. Since CCSM is an MPI application, we also describe our current work on building a MPI implementation for grids to grid-enable CCSM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate the coexistence of two opposite photo-effects, viz. fast photodarkening (PD) and slow photobleaching (PB) in Ge19As21Se60 thin films, when illuminated with a laser of wavelength 671 nm. PD appears to begin instantaneously upon light illumination and saturates in tens of seconds. By comparison, PB is a slower process that starts only after PD has saturated. Both PD and PB follow stretched exponetial dependence on time. Modeling of overall change as a linear sum of two contributions suggests that the changes in As and Ge parts of glass network respond to light effectively indepndent of each other. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.