56 resultados para TELECOMMUNICATIONS
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average Power Ratio (PAPR) and avoid the problem of switching off antennas. But square CODs for 2(a) antennas with a + 1. complex variables, with no zero entries were discovered only for a <= 3 and if a + 1 = 2(k), for k >= 4. In this paper, a method of obtaining no zero entry (NZE) square designs, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. Then, starting from a so constructed NZE CPOD for n = 2(a+1) antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas, successively. Compared to the CODs, CPODs have slightly more ML decoding complexity for rectangular QAM constellations and the same ML decoding complexity for other complex constellations. Using the recently constructed NZE CODs for 8 antennas our method leads to NZE CPODs for 16 antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulation results show that bit error performance of our codes is same as that of the CODs under average power constraint and superior to CODs under peak power constraint.
Resumo:
In this paper, we exploit the idea of decomposition to match buyers and sellers in an electronic exchange for trading large volumes of homogeneous goods, where the buyers and sellers specify marginal-decreasing piecewise constant price curves to capture volume discounts. Such exchanges are relevant for automated trading in many e-business applications. The problem of determining winners and Vickrey prices in such exchanges is known to have a worst-case complexity equal to that of as many as (1 + m + n) NP-hard problems, where m is the number of buyers and n is the number of sellers. Our method proposes the overall exchange problem to be solved as two separate and simpler problems: 1) forward auction and 2) reverse auction, which turns out to be generalized knapsack problems. In the proposed approach, we first determine the quantity of units to be traded between the sellers and the buyers using fast heuristics developed by us. Next, we solve a forward auction and a reverse auction using fully polynomial time approximation schemes available in the literature. The proposed approach has worst-case polynomial time complexity. and our experimentation shows that the approach produces good quality solutions to the problem. Note to Practitioners- In recent times, electronic marketplaces have provided an efficient way for businesses and consumers to trade goods and services. The use of innovative mechanisms and algorithms has made it possible to improve the efficiency of electronic marketplaces by enabling optimization of revenues for the marketplace and of utilities for the buyers and sellers. In this paper, we look at single-item, multiunit electronic exchanges. These are electronic marketplaces where buyers submit bids and sellers ask for multiple units of a single item. We allow buyers and sellers to specify volume discounts using suitable functions. Such exchanges are relevant for high-volume business-to-business trading of standard products, such as silicon wafers, very large-scale integrated chips, desktops, telecommunications equipment, commoditized goods, etc. The problem of determining winners and prices in such exchanges is known to involve solving many NP-hard problems. Our paper exploits the familiar idea of decomposition, uses certain algorithms from the literature, and develops two fast heuristics to solve the problem in a near optimal way in worst-case polynomial time.
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
A Linear Processing Complex Orthogonal Design (LPCOD) is a p x n matrix epsilon, (p >= n) in k complex indeterminates x(1), x(2),..., x(k) such that (i) the entries of epsilon are complex linear combinations of 0, +/- x(i), i = 1,..., k and their conjugates, (ii) epsilon(H)epsilon = D, where epsilon(H) is the Hermitian (conjugate transpose) of epsilon and D is a diagonal matrix with the (i, i)-th diagonal element of the form l(1)((i))vertical bar x(1)vertical bar(2) + l(2)((i))vertical bar x(2)vertical bar(2)+...+ l(k)((i))vertical bar x(k)vertical bar(2) where l(j)((i)), i = 1, 2,..., n, j = 1, 2,...,k are strictly positive real numbers and the condition l(1)((i)) = l(2)((i)) = ... = l(k)((i)), called the equal-weights condition, holds for all values of i. For square designs it is known. that whenever a LPCOD exists without the equal-weights condition satisfied then there exists another LPCOD with identical parameters with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1. This implies that the maximum possible rate for square LPCODs without the equal-weights condition is the same as that or square LPCODs with equal-weights condition. In this paper, this result is extended to a subclass of non-square LPCODs. It is shown that, a set of sufficient conditions is identified such that whenever a non-square (p > n) LPCOD satisfies these sufficient conditions and do not satisfy the equal-weights condition, then there exists another LPCOD with the same parameters n, k and p in the same complex indeterminates with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1.
Resumo:
In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Due to boom in telecommunications market, there is hectic competition among the cellular handset manufacturers. As cellular manufacturing industry operates in an oligopoly framework, often price-rigidity leads to non-price wars. The handset manufacturing firms indulge in product innovation and also advertise their products in order to achieve their objective of maximizing discounted flow of profit. It is of interest to see what would be the optimal advertisement-innovation mix that would maximize the discounted How of profit for the firms. We used differential game theory to solve this problem. We adopted the open-loop solution methodology. We experimented for various scenarios over a 30 period horizon and derived interesting managerial insights.
Resumo:
We provide a comparative performance analysis of network architectures for beacon enabled Zigbee sensor clusters using the CSMA/CA MAC defined in the IEEE 802.15.4 standard, and organised as (i) a star topology, and (ii) a two-hop topology. We provide analytical models for obtaining performance measures such as mean network delay, and mean node lifetime. We find that the star topology is substantially superior both in delay performance and lifetime performance than the two-hop topology.
Resumo:
Capacity region for two-user Gaussian Broadcast Channels (GBC) is well known with the optimal input being Gaussian. In this paper we explore the capacity region for GBC when the users' symbols are taken from finite complex alphabets (like M-QAM, M-PSK). When the alphabets for both the users are the same we show that rotation of one of the alphabets enlarges the capacity region. We arrive at an optimal angle of rotation by simulation. The effect of rotation on the capacity region at different SNRs is also studied using simulation results. Using the setup of Fading Broadcast Channel (FBC) given by [Li and Goldsmith, 2001], we study the ergodic capacity region with inputs from finite complex alphabets. It is seen that, using the procedure for optimum power allocation obtained in [Li and Goldsmith, 2001] for Gaussian inputs, to allocate power to symbols from finite complex alphabets, relative rotation between the alphabets does not improve the capacity region. Simulation results for a modified heuristic power allocation procedure for finite-constellation case, show that Constellation Constrained capacity region enlarges with rotation.
Resumo:
In this paper, we introduce the three-user cognitive radio channels with asymmetric transmitter cooperation, and derive achievable rate regions under several scenarios depending on the type of cooperation and decoding capability at the receivers. Two of the most natural cooperation mechanisms for the three-user channel are considered here: cumulative message sharing (CMS) and primary-only message sharing (PMS). In addition to the message sharing mechanism, the achievable rate region is critically dependent on the decoding capability at the receivers. Here, we consider two scenarios for the decoding capability, and derive an achievable rate region for each one of them by employing a combination of superposition and Gel'fand-Pinsker coding techniques. Finally, to provide a numerical example, we consider the Gaussian channel model to plot the rate regions. In terms of achievable rates, CMS turns out to be a better scheme than PMS. However, the practical aspects of implementing such message-sharing schemes remain to be investigated.