59 resultados para System Identification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify H-1/C-13 sugar spin systems in C-13 labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of C-13-H-1 groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A few variance reduction schemes are proposed within the broad framework of a particle filter as applied to the problem of structural system identification. Whereas the first scheme uses a directional descent step, possibly of the Newton or quasi-Newton type, within the prediction stage of the filter, the second relies on replacing the more conventional Monte Carlo simulation involving pseudorandom sequence with one using quasi-random sequences along with a Brownian bridge discretization while representing the process noise terms. As evidenced through the derivations and subsequent numerical work on the identification of a shear frame, the combined effect of the proposed approaches in yielding variance-reduced estimates of the model parameters appears to be quite noticeable. DOI: 10.1061/(ASCE)EM.1943-7889.0000480. (C) 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel form of nonlinear stochastic filtering based on an iterative evaluation of a Kalman-like gain matrix computed within a Monte Carlo scheme as suggested by the form of the parent equation of nonlinear filtering (Kushner-Stratonovich equation) and retains the simplicity of implementation of an ensemble Kalman filter (EnKF). The numerical results, presently obtained via EnKF-like simulations with or without a reduced-rank unscented transformation, clearly indicate remarkably superior filter convergence and accuracy vis-a-vis most available filtering schemes and eminent applicability of the methods to higher dimensional dynamic system identification problems of engineering interest. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo filter, based on the idea of averaging over characteristics and fashioned after a particle-based time-discretized approximation to the Kushner-Stratonovich (KS) nonlinear filtering equation, is proposed. A key aspect of the new filter is the gain-like additive update, designed to approximate the innovation integral in the KS equation and implemented through an annealing-type iterative procedure, which is aimed at rendering the innovation (observation prediction mismatch) for a given time-step to a zero-mean Brownian increment corresponding to the measurement noise. This may be contrasted with the weight-based multiplicative updates in most particle filters that are known to precipitate the numerical problem of weight collapse within a finite-ensemble setting. A study to estimate the a-priori error bounds in the proposed scheme is undertaken. The numerical evidence, presently gathered from the assessed performance of the proposed and a few other competing filters on a class of nonlinear dynamic system identification and target tracking problems, is suggestive of the remarkably improved convergence and accuracy of the new filter. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A very general and numerically quite robust algorithm has been proposed by Sastry and Gauvrit (1980) for system identification. The present paper takes it up and examines its performance on a real test example. The example considered is the lateral dynamics of an aircraft. This is used as a vehicle for demonstrating the performance of various aspects of the algorithm in several possible modes.