51 resultados para Stimuli visuels
Resumo:
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A charge transfer (CT) mediated two-component, multistimuli responsive supergelation involving a L-histidine-appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene-diimide (Asym-NDI) derivative as an acceptor in a 2: 1 mixture of H2O/MeOH was investigated. Asym-NDI alone self-assembled into pH-responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular di-chroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling ``pearls-on-a-string'' from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.
Resumo:
The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes Staphylococcus aureus (MESA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, similar to 60% and similar to 70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CPU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.
Resumo:
Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.
Resumo:
Hydrogen peroxide (H2O2) is a key reactive oxygen species and a messenger in cellular signal transduction apart from playing a vital role in many biological processes in living organisms. In this article, we present phenyl boronic acid-functionalized quinone-cyanine (QCy-BA) in combination with AT-rich DNA (exogenous or endogenous cellular DNA), i.e., QCy-BA subset of DNA as a stimuli-responsive NIR fluorescence probe for measuring in vitro levels of H2O2. In response to cellular H2O2 stimulus, QCy-BA converts into QCy-DT, a one-donor-two-acceptor (D2A) system that exhibits switch-on NIR fluorescence upon binding to the DNA minor groove. Fluorescence studies on the combination probe QCy-BA subset of DNA showed strong NIR fluorescence selectively in the presence of H2O2. Furthermore, glucose oxidase (GOx) assay confirmed the high efficiency of the combination probe QCy-BA subset of DNA for probing H2O2 generated in situ through GOx-mediated glucose oxidation. Quantitative analysis through fluorescence plate reader, flow cytometry and live imaging approaches showed that QCy-BA is a promising probe to detect the normal as well as elevated levels of H2O2 produced by EGF/Nox pathways and post-genotoxic stress in both primary and senescent cells. Overall, QCy-BA, in combination with exogenous or cellular DNA, is a versatile probe to quantify and image H2O2 in normal and disease-associated cells.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.
Resumo:
It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.
Resumo:
The relative rôles of FSH and LH in ovulation induction in immature and adult cycling rats and hamsters have been evaluated. Both heterologous purified pituitary hormones and homologous crude pituitary extracts have been used as ovulatory stimuli in immature animals primed with PMSG. Well-characterized FSH and LH antisera have been used in the above model systems to achieve specific neutralization of FSH and LH. The present study revealed that LH is the physiological trigger needed for induction of ovulation in both rats and hamsters and FSH cannot, by itself, induce ovulation in the total absence of LH.
Resumo:
Dendritic cells (DC) efficiently phagocytose invading bacteria, but fail to kill intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium). We analysed the intracellular fate of Salmonella in murine bone marrow-derived DC (BM-DC). The intracellular proliferation and subcellular localization were investigated for wild-type S. Typhimurium and mutants deficient in Salmonella pathogenicity island 2 (SPI2), a complex virulence factor that is essential for systemic infections in the murine model and intracellular survival and replication in macrophages. Using a segregative plasmid to monitor intracellular cell division, we observed that, in BM-DC, S. Typhimurium represents a static, non-dividing population. In BM-DC, S. Typhimurium resides in a membrane-bound compartment that has acquired late endosomal markers. However, these bacteria respond to intracellular stimuli, because induction of SPI2 genes was observed. S. Typhimurium within DC are also able to translocate a virulence protein into their host cells. SPI2 function was not required for intracellular survival in DC, but we observed that the maturation of the Salmonella-containing vesicle is different in DC infected with wild-type bacteria and a strain deficient in SPI2. Our observations indicate that S. Typhimurium in DC are able to modify normal processes of their host cells.
Resumo:
An effective transcriptional response to redox stimuli is of particular importance for Mycobacterium tuberculosis, as it adapts to the environment of host alveoli and macrophages. The M. tuberculosis a factor sigma(L) regulates the expression of genes involved in cell-wall and polyketide syntheses. sigma(L) interacts with the cytosolic anti-sigma domain of a membrane-associated protein, RslA. Here we demonstrate that RslA binds Zn2+ and can sequester sigma(L) in a reducing environment. In response to an oxidative stimulus, proximal cysteines in the CXXC motif of RslA form a disulfide bond, releasing bound Zn2+. This results in a substantial rearrangement of the sigma(L)/RslA complex, leading to an 8-fold decrease in the affinity of RslA for sigma(L). The crystal structure of the -35-element recognition domain of sigma(L), sigma(L)(4), bound to RslA reveals that RslA inactivates sigma(L) by sterically occluding promoter DNA and RNpolymerase binding sites. The crystal structure further reveals that the cysteine residues that coordinate Zn2+ in RslA are solvent exposed in the complex, thus providing a structural basis for the redox sensitivity of RslA. The biophysical parameters of sigma(L)/RslA interactions provide a template for understanding how variations in the rate of Zn2+ release and associated conformational changes could regulate the activity of a Zn2+-associated anti-sigma factor. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Initiation of follicular growth by specific hormonal stimuli in ovaries of immature rats and hamsters was studied by determining the rate of incorporation of3H-thymidine into ovarian DNAin vitro. Incorporation was considered as an index of DNA synthesis and cell multiplication. A single injection of pregnant mare serum gonadotropin could thus maximally stimulate by 18 hr3H-thymidine incorporation into DNA of the ovary of immature hamsters. Neutralization of pregnant mare serum gonadotropin by an antiserum to ovine follicle stimulating hormone only during the initial 8–10 hr and not later could inhibit the increase in3H-thymidine incorporationin vitro observed at 18 hr, suggesting that the continued presence of gonadotropin stimulus was not necessary for this response. The other indices of follicular growth monitored such as ovarian weight, serum estradiol and uterine weight showed discernible increase at periods only after the above initial event. A single injection of estrogen (diethyl stilbesterol or estradiol-l7β) could similarly cause 18 hr later, a stimulation in the rate of incorporation of3H-thymidine into DNAin vitro in ovaries of immature rats. The presence of endogenous gonadotropins, however, was obligatory for observing this response to estrogen. Evidence in support of the above was two-fold: (i) administration of antiserum to follicle stimulating hormone or luteinizing hormone along with estrogen completely inhibited the increase in3H-thymidine incorporation into ovarian DNAin vitro; (ii) a radioimmunological measurement revealed following estrogen treatment, the presence of a higher concentration of endogenous follicle stimulating hormone in the ovary. Finally, administration of varying doses of ovine follicle stimulating hormone along with a constant dose of estrogen to immature rats produced a dose-dependent increment in the incorporation of3H-thymidine into ovarian DNAin vitro. These observations suggested the potentiality of this system for developing a sensitive bioassay for follicle stimulating hormone.
Resumo:
Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.