46 resultados para Specialized Judges
Resumo:
Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Resumo:
Multiprocessor systems which afford a high degree of parallelism are used in a variety of applications. The extremely stringent reliability requirement has made the provision of fault-tolerance an important aspect in the design of such systems. This paper presents a review of the various approaches towards tolerating hardware faults in multiprocessor systems. It. emphasizes the basic concepts of fault tolerant design and the various problems to be taken care of by the designer. An indepth survey of the various models, techniques and methods for fault diagnosis is given. Further, we consider the strategies for fault-tolerance in specialized multiprocessor architectures which have the ability of dynamic reconfiguration and are suited to VLSI implementation. An analysis of the state-óf-the-art is given which points out the major aspects of fault-tolerance in such architectures.
Resumo:
It is well known that space-time block codes (STBCs) obtained from orthogonal designs (ODs) are single-symbol decodable (SSD) and from quasi-orthogonal designs (QODs) are double-symbol decodable (DSD). However, there are SSD codes that are not obtainable from ODs and DSD codes that are not obtainable from QODs. In this paper, a method of constructing g-symbol decodable (g-SD) STBCs using representations of Clifford algebras are presented which when specialized to g = 1, 2 gives SSD and DSD codes, respectively. For the number of transmit antennas 2(a) the rate (in complex symbols per channel use) of the g-SD codes presented in this paper is a+1-g/2(a-9). The maximum rate of the DSD STBCs from QODs reported in the literature is a/2(a-1) which is smaller than the rate a-1/2(a-2) of the DSD codes of this paper, for 2(a) transmit antennas. In particular, the reported DSD codes for 8 and 16 transmit antennas offer rates 1 and 3/4, respectively, whereas the known STBCs from QODs offer only 3/4 and 1/2, respectively. The construction of this paper is applicable for any number of transmit antennas. The diversity sum and diversity product of the new DSD codes are studied. It is shown that the diversity sum is larger than that of all known QODs and hence the new codes perform better than the comparable QODs at low signal-to-noise ratios (SNRs) for identical spectral efficiency. Simulation results for DSD codes at variousspectral efficiencies are provided.
Resumo:
An event sequence recorder is a specialized piece of equipment that accepts inputs from switches and contactors, and prints the sequence in which they operate. This paper describes an event sequence recorder based on an Intel 8085 microprocessor. It scans the inputs every millisecond and prints in a compact form the channel number, type of event (normal or abnormal) and time of occurrence. It also communicates these events over an RS232C link to a remote computer. A realtime calendar/clock is included. The system described has been designed for continuous operation in process plants, power stations etc. The system has been tested and found to be working satisfactorily.
Resumo:
In this paper we address the problem of transmission of correlated sources over a fading multiple access channel (MAC). We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). Transmission schemes for discrete and Gaussian sources over a fading GMAC are considered. Various power allocation strategies are also compared.
Resumo:
Several molecules like ionophores, vitamins, ion-binding cyclic peptides, acidic phospholipids, surfactants are known to expose the inner side of vesicles, to the externally added cations. Whereas ionophores and certain other systems bring about these changes by a selective transport (influx) of the cation by specialized mechanisms known as the carrier and channel mechanism, other systems cause lysis and vesicle fusion. These systems have been successfully studied using1H,31 P and13C nuclear magnetic resonance spectroscopy after the demonstration, fifteen years ago, of the ability of paramagnetic lanthanide ions to distinguish the inside of the vesicle from the outside. The results of these ’nuclear magnetic resonance kinetics’ experiments are reviewed.
Resumo:
This paper deals with the problem of decoupling a class of linear time-varying multi-variable systems, based on the defining property that the impulse response matrix of a decoupled system is diagonal. Depending on the properties of the coefficient matrices of the vector differential equation of the open-loop system, the system may be uniformly or totally decoupled. The necessary and sufficient conditions that permit a system to be uniformly or totally decoupled by state variable feedback are given. The main contribution of this paper is the precise definition of these two classes of decoupling and a rigorous derivation of the necessary and sufficient conditions which show the necessity of requiring that the system be of constant ordered rank with respect to observability. A simple example illustrates the importance of having several definitions of decoupling. Finally, the results are specialized to the case of time invariant systems.
Resumo:
Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized. Electronic supplementary material The online version of this article (doi:10.1007/s10142-009-0132-0) contains supplementary material, which is available to authorized users.
Resumo:
Emerging embedded applications are based on evolving standards (e.g., MPEG2/4, H.264/265, IEEE802.11a/b/g/n). Since most of these applications run on handheld devices, there is an increasing need for a single chip solution that can dynamically interoperate between different standards and their derivatives. In order to achieve high resource utilization and low power dissipation, we propose REDEFINE, a polymorphic ASIC in which specialized hardware units are replaced with basic hardware units that can create the same functionality by runtime re-composition. It is a ``future-proof'' custom hardware solution for multiple applications and their derivatives in a domain. In this article, we describe a compiler framework and supporting hardware comprising compute, storage, and communication resources. Applications described in high-level language (e.g., C) are compiled into application substructures. For each application substructure, a set of compute elements on the hardware are interconnected during runtime to form a pattern that closely matches the communication pattern of that particular application. The advantage is that the bounded CEs are neither processor cores nor logic elements as in FPGAs. Hence, REDEFINE offers the power and performance advantage of an ASIC and the hardware reconfigurability and programmability of that of an FPGA/instruction set processor. In addition, the hardware supports custom instruction pipelining. Existing instruction-set extensible processors determine a sequence of instructions that repeatedly occur within the application to create custom instructions at design time to speed up the execution of this sequence. We extend this scheme further, where a kernel is compiled into custom instructions that bear strong producer-consumer relationship (and not limited to frequently occurring sequences of instructions). Custom instructions, realized as hardware compositions effected at runtime, allow several instances of the same to be active in parallel. A key distinguishing factor in majority of the emerging embedded applications is stream processing. To reduce the overheads of data transfer between custom instructions, direct communication paths are employed among custom instructions. In this article, we present the overview of the hardware-aware compiler framework, which determines the NoC-aware schedule of transports of the data exchanged between the custom instructions on the interconnect. The results for the FFT kernel indicate a 25% reduction in the number of loads/stores, and throughput improves by log(n) for n-point FFT when compared to sequential implementation. Overall, REDEFINE offers flexibility and a runtime reconfigurability at the expense of 1.16x in power and 8x in area when compared to an ASIC. REDEFINE implementation consumes 0.1x the power of an FPGA implementation. In addition, the configuration overhead of the FPGA implementation is 1,000x more than that of REDEFINE.
Resumo:
Dielectric properties of the homologous series of newly synthesized nonchiral compounds N-(4-n-alkyloxy-2-hydroxy-benzylidene)-4-carbethoxyaniline, (n = 6, 8, 10, 12) having wide temperature range (∼60°C) smectic A (SmA) phase, have been studied by the impedance spectroscopy in the frequency range of 100 Hz to 1 MHz. Measurements have been carried out for two principal alignments (planar as well as homeotropic) of the SmA phase. Dielectric anisotropy (Δε' = ε'∥ - ε'⊥) for all the members of the series has been found to be negative for the whole temperature range of SmA phase. Magnitude of the dielectric anisotropy (|Δε'|) has been found to decrease with the number of alkyl chains. Relaxation frequencies corresponding to the rotation of the individual molecules about their short axes, lie below 1 MHz and obey the Arrhenius law by which activation energies have been determined. However, the relaxation frequencies corresponding to the rotation of the molecules about their short axes apparently lie above 10 MHz.
Resumo:
1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.
Resumo:
The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.
Resumo:
The presence of an indole oxidase (indole: O2 oxidoreductase) was detected in the leaf extracts of Tecoma stans. The end product of the reaction was identified as anthranil. Formylaminobenzaldehyde, and o- aminobenzaldehyde were detected as intermediates in the overall conversion. Oxygen-uptake studies established that 3 atoms of oxygen were consumed in the formation of anthranil form I molecule of indole. The enzyme showed an absolute requirement for FAD and Cu2+ for maximum activity. FMN was ineffective as a cofactor. The enzyme had an optimum pH of 5.0. Inhibition studies with GSH and p-chloromericuribenzoate showed that a sulfhydrylcupric-ion complex at the active centre is highly essential.
Resumo:
An enzyme which catalyses the oxidation of o-aminophenol to o-quinoneimine and the subsequent condensation of o-aminophenol and o-quinoneime to give isophenoxazine has been isolated from the leaves of Tecoma stans. The reaction had an optimum pH of 6.2 and an optimum temperature of 45°. Heavy-metal ions like Hg2+, Co2+, Mg2+, Fe3+, were inhibitory. Mn2+ activated the reaction to about 40%. The reaction requires intact sulfhydryl groups. A study of the coenzyme requirements showed that isophenoxazine synthase (o-aminophenol: O2 oxidoreductase) is a flavoprotein requiring FAD for maximum activity. Stoichiometric studies showed that 2 moles of o-aminophenol gave 1 mole of isophhenoxazine.
Studies of the enzymes involved in nicotinamide adenine dinucleotide metabolism in Aspergillus niger
Resumo:
The enzyme nicotinamide amidase (nicotinamide amidohydrolase) was purified 57-fold from Aspergillus niger. The purified preparation was specific towards its substrate nicotinamide and did not deamidate NADP, NAD, NMN, N′-methyl nicotinamide, asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide. The asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide.vThe optimum pH was found to be 7.5. Temperature optimum was 40°. It had a Km value of 6.504 · 10−4 M towards nicotinamide. The enzyme exhibited Mg2+ ion requirement for its optimum activity. NAD-glycohydrolase (EC 3.2.2.5) was purified 109-fold from the mold. A. niger. The enzyme preparation was active only towards NAD and NADP and did not attack NMN, N′-methylnicotinamide and NADH. The Km value for NAD was found to be 7.693 · 10−6 M. The enzyme did not require any metal ion for its activity. It is suggested that A. niger will serve a better source for a large scale preparation of NAD-glycohydrolase than the Neurospora mold. The biological role of both NAD-glycohydrolase and nicotinamide amidase in the regulation of cellular NAD level has been discussed. It is, further, observed that NAD did not exert its feedback control on nicotinamide amidase at least in A. niger.