17 resultados para Sorghum -- Somatic embryogenesis.
Resumo:
In the synchronous embryogenesis system of sandalwood developed in our laboratory, we observed that the early events of differentiation from freshly induced callus (stage 0) are accomplished in three distinct stages viz., preglobular masses (stage 1), globular embryos (stage 2), and bipolar embryos (stage 3). Transition from stage 0 to 1 was accomplished using 2,4-D and involves a stage specific appearance of two polypeptides of 15 and 30 kDa molecular weight. A 24 kDa polypeptide that was detected as a marked band in extracts of primary callus was not detected in stages 1, 2, and 3. Further, the tissue level of a 50 kDa glycoprotein decreased during transition from stage 2 to stage 3. However, the levels of glycoproteins in the medium were markedly higher in stage 0 cultures compared to those in stage 1. The activities of a protein kinase, glycosidase, and xylanase increased markedly with progressing embryogenesis. Our observations suggest that in addition to being controlled at the level of stage-specific gene expression, somatic embryogenesis in sandalwood is also regulated at the level of controls on cell wall flexibility and posttranslational changes in the pool of preexisting proteins.
Resumo:
Direct somatic embryogenesis from isolated intact as well as broken zygotic embryos and in vitro plantlets of nutmeg (Myristica fragrans Houtt.) was obtained. Enhanced embryogenic response was associated with broken zygotic embryos. Activated charcoal and light were the critical factors for induction of somatic embryogenesis in nutmeg. Histological evaluation revealed the presence of globular and cotyledonary stages. The somatic embryos underwent partial germination after a six-month lag period. A wide range of abnormal embryos were observed. The somatic embryos synthesised chlorophyll, exhibited phenylalanine ammonia lyase activity, synthesised phenolics, and could serve as a stable source of secondary metabolites of nutmeg which are commercially important.
Resumo:
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy, Several genes have been identified and cloned from the carrot system, These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using a Cuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes.
Resumo:
Direct regeneration of somatic embryos was obtained from immature zygotic embryos of Dalbergia latifolia. Immature embryos dissected from green pods 90 d after flowering gave the highest frequency of somatic embryo formation. Preculture on high 2,4-D medium for 4 weeks induced direct somatic embryogenesis, which was expressed during the second culture phase in the presence of low 2,4-D along with a high sucrose concentration. Embryos were separated and transferred to the maturation medium containing MS + 0.5-1.0 mg/L BAP, where embryos developed into plantlets. Somatic embryos failed to convert into complete plants without BAP treatment. This method of direct regeneration of somatic embryos without a callus phase has direct application for genetic manipulation studies.
Resumo:
Embryogenesis has been induced from endosperm callus cultures of sandalwood (Santalum album L.). Viable plantlets developed from the embryoids on subculture to White's basal medium supplemented with 0.5 mg/l of indole acetic acid. Chromosomal analysis of the root tips showed the triploid number 3n = 30.
Resumo:
1. The rat brain type IIA Na+ channel alpha-subunit was stably expressed in Chinese hamster ovary (CHO) cells. Current through the expressed Na+ channels was studied using the whole-cell configuration of the patch clamp technique. The transient Na+ current was sensitive to TTX and showed a bell-shaped peak current vs. membrane potential relation. 2. Na+ current inactivation was better described by the sum of two exponentials in the potential range -30 to +40 mV, with. a dominating fast component and a small slower component. 3. The steady-state inactivation, h(infinity), was related to potential by a Boltzmann distribution, underlying thr ee states of the inactivation gate. 4. Recovery of the channels from inactivation at different potentials in the range -70 to -120 mV were characterized by al? initial delay which decreased with hyperpolarization. The time course was well fitted by the sum of two exponentials. In this case the slower exponential was the major component, and both time constants decreased with hyperpolarization. 5. For a working description of the Na+ channel inactivation in this preparation, with a minimal deviation from the Hodgkin-Huxley model, a three-state scheme of the form O reversible arrow I-1 reversible arrow I-2 was proposed, replacing the original two-state scheme of the Hodgkin-Huxley model, and the rate constants are reported. 6. The instantaneous current-voltage relationship showed marked deviation from linearity and was satisfactorily fitted by the constant-field equation. 7. The time course of activation was described by an m(x) model. However, the best-fitted value of x varied with the membrane potential and had a mean value of 2. 8. Effective gating charge was determined to be 4.7e from the slope of the activation plot, plotted on a logarithmic scale. 9. The rate constants of activation, alpha(m) and beta(m), were determined. Their functional dependence on the membrane potential was investigated.
Resumo:
Determination of the protein content and lysine levels of a number of nonhybrid varieties of grain sorghum indicates large variations in the protein content. Statistical analysis of data on amounts of lysine shows that a negative correlation exists between per cent lysine in the protein and per cent protein in the seed. The proportion of various protein fractions in endosperm of five varieties of grain sorghum of both low- and high-protein type has been determined. Results show that prolamine and glutelin are the principal protein fractions, and increased protein levels in sorghum varieties are correlated with an increase mainly in the prolamine fraction. Nine high- and low-protein varieties of grain sorghum have been analyzed for their amino acid composition by ion exchange procedures. One of the high-protein genetic varieties of sorghum has a high concentration of lysine in the seed. Amino acid composition of the protein fractions of two varieties is also reported. These data permit an evaluation of the nutritional quality of sorghum protein and factors that influence the quality of the protein.
Resumo:
Electrophoretic analyses of sorghum flour protein by disc electrophoresis in polyacrylamide gels containing urea have been described. The albumin, globulin, and prolamin fractions of sorghum endosperm meal have been investigated, using pH 9.5 and 4.3 gel systems with four different buffers. Highly complex patterns were observed for all three protein fractions. It has been suggested that this method can provide a convenient tool for the analyses of seed proteins which are relatively insoluble in aqueous buffers.
Resumo:
An investigation has been carried out on the proteinase inhibitors of grain sorghum (Sorghum bicolor (L.) Moench). One of the inhibitors has been isolated in a pure form and characterized. The proteinase inhibitor was extracted from the acetone-defatted sorghum meal and purified by selective thermal denaturation, ammonium sulfate fractionation, Sephadex gel filtration and DEAE-cellulose chromatography (DEAE-preparation II). This preparation was demonstrated to be a mixture of three inhibitor components by polyacrylamide disc gel electrophoresis. Further resolution of this mixture into Inhibitors I to III was achieved by QAE-Sephadex chromatography. Sorghum Inhibitor III was homogeneous by the criteria of disc gel electrophoresis and has been more fully characterized. A molecular weight of 25,000 was obtained for Inhibitor III by gel filtration and was in agreement with the value calculated from the amino acid composition of the inhibitor. The N-terminal amino acid residue of Inhibitor III, a single chain protein, was isoleucine. Sorghum proteinase inhibitors inhibit specifically the serine proteinases and are inactive towards the other classes of proteinases. Inhibitor III is primarily a chymotrypsin inhibitor, whereas Inhibitors I and II inhibit both trypsin and chymotrypsin.
Resumo:
The morphogenetic pathway leading to plant differentiation in tobacco mesophyll protoplasts could be regulated. The course of development via organogenesis or embryogenesis was controlled by manipulating nutrient media, culture conditions and hormone requirements. A lowering of molarity of medium after 5 weeks of protoplast culture, inclusion of GA3 (0.5 mg/l) in the medium for first 8 weeks of culture and exclusion of reduced nitrogen in the medium resulted in shoot organogenesis, while maintenance of higher molarity of the medium till 8 weeks, reduced nitrogen in the medium and removal of 2, 4-D after 5 weeks of culture induced embryogenesis. Regenerability of viable plants was obtained by both developmental pathways. The implications of tobacco embryogenesis system in plant molecular genetics were highlighted.
Resumo:
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Resumo:
A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.
Resumo:
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these Studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition. the Wnt4f mRNA concentration was also reduced in the caput regions of ICI-182780-treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present Study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and Suggest a role for WNT4 in maintaining epididymal homeostasis.