177 resultados para Sodium sulfur battery
Resumo:
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.
Resumo:
Ionic conductivity and other physico-chemical properties of a soft matter composite electrolyte comprising of a polymer-sodium salt complex and a non-ionic plastic crystal are discussed here. The electrolyte under discussion comprises of polyethyleneoxide (PEO)-sodium triflate (NaCF3SO3) and succinonitrile (SN). Addition of SN to PEO-NaCF3SO3 resulted in significant enhancement in ionic conductivity. At 50% SN concentration (with respect to weight of polymer), the polymer-plastic composite electrolyte room temperature (= 25 degrees C) ionic conductivity was similar to 1.1 x 10(-4) Omega(-1) cm(-1), approximately 45 times higher than PEO-NaCF3SO3. Observations from ac-impedance spectroscopy along with X-ray diffraction, differential scanning calorimetry and Fourier transform inrared spectroscopy strongly suggest the enhancement in the composite is ionicconductivity due to enhanced ion mobility via decrease in crystallinity of PEO. The free standing composite polymer-plastic electrolytes were more compliable than PEO-NaCF3SO3 thus exhibiting no detrimental effects of succinonitrile addition on the mechanical stability of PEO-NaCF3SO3. We propose that the exploratory PEO-NaCF3SO3-SN system.discussed here will eventually be developed as a prototype electrolyte.for sodium-sulfur batteries capable of operating at ambient and.sub-ambient conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)(3), registering the highest-ever Fe3+/ Fe2+ redox potential at 3.8V (versus Na, and hence 4.1V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries.
Resumo:
Rechargeable batteries have been the torchbearer electrochemical energy storage devices empowering small-scale electronic gadgets to large-scale grid storage. Complementing the lithium-ion technology, sodium-ion batteries have emerged as viable economic alternatives in applications unrestricted by volume/weight. What is the best performance limit for new-age Na-ion batteries? This mission has unravelled suites of oxides and polyanionic positive insertion (cathode) compounds in the quest to realize high energy density. Economically and ecologically, iron-based cathodes are ideal for mass-scale dissemination of sodium batteries. This Perspective captures the progress of Fe-containing earth-abundant sodium battery cathodes with two best examples: (i) an oxide system delivering the highest capacity (similar to 200 mA h/g) and (ii) a polyanionic system showing the highest redox potential (3.8 V). Both develop very high energy density with commercial promise for large-scale applications. Here, the structural and electrochemical properties of these two cathodes are compared and contrasted to describe two alternate strategies to achieve the same goal, i.e., improved energy density in Fe-based sodium battery cathodes.
Resumo:
Sodium-ion-based batteries have evolved as excellent alternatives to their lithium-ion-based counterparts due to the abundance, uniform geographical distribution and low price of Na resources. In the pursuit of sodium chemistry, recently the alluaudite framework Na2M2(SO4)(3) has been unveiled as a high-voltage sodium insertion system. In this context, the framework of density functional theory has been applied to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)(3) (M = Fe, Mn, Co and Ni). It is shown that full removal of sodium atoms from the Fe-based device is not a favorable process due to the 8% volume shrinkage. The imaginary frequencies obtained in the phonon dispersion also reflect this instability and the possible phase transition. This high volume change has not been observed in the cases of the Co- and Ni-based compounds. This is because the redox reaction assumes a different mechanism for each of the compounds investigated. For the polyanion with Fe, the removal of sodium ions induces a charge reorganization at the Fe centers. For the Mn case, the redox process induces a charge reorganization of the Mn centers with a small participation of the oxygen atoms. The Co and Ni compounds present a distinct trend with the redox reaction occurring with a strong participation of the oxygen sublattice, resulting in a very small volume change upon desodiation. Moreover, the average deintercalation potential for each of the compounds has been computed. The implications of our findings have been discussed both from the scientific perspective and in terms of technological aspects.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
The magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below similar to 3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole dipole interactions.
Resumo:
Pyrophosphate oxyanionic framework compounds offer a great platform to investigate new battery materials. In our continuing effort to explore pyrophosphate cathodes for sodium-ion batteries, we report, for the first time, the synthesis and use of tetragonal Na-2(VO)P2O7 as a potential sodium-ion insertion material. This material can be easily prepared by using a conventional solid-state route at a relatively low temperature of 400 degrees C. Stabilizing as a tetragonal structure with an open framework, the material offers pathways for Na+ diffusion. The as-synthesized material, with no further cathode optimization, yields a reversible capacity (Q) approaching 80 mAh g(-1) (Q(Theoretical) = 93.4 mAh g(-1)) involving a one electron V5+/V4+ redox potential located at 3.8 V (vs. Na/Na+). Furthermore, the material exhibits decent rate kinetics and reversibility. Combining green synthesis and moderate electrochemical properties, t-Na-2(VO)P2O7 is reported as a new addition to the growing family of pyrophosphate cathodes for sodium-ion batteries.
Resumo:
Graphene was produced by electrochemical exfoliation of a used battery electrode. Aqueous solutions of cationic (cetyltrimethylammonium bromide), anionic (sodium dodecyl sulphate), and nonionic (poly vinyl pyrrolidone) surfactants, along with NaCl and combinations of these surfactants with NaCl, were used as the electrolyte. The following observations were made: (I) up to several micrometer sized graphene sheets were produced, (II) the addition of NaCl into the electrolytes significantly enhanced the yield of the exfoliated graphene, (III) the type of surfactant affected the defect density of the exfoliated product, and (IV) electrochemical impedance spectroscopy provided insight into the reason for the changes in the defect density ratio between the graphene samples.
Resumo:
The elastic properties of sodium borovanadate glasses have been studied over a wide range of composition using ultrasonic measurements. It is found that variation of different elastic moduli is very similar in any given series of composition. The bulk and shear moduli show a monotonic variation with the covalent bond energy densities calculated from the proposed structural model for these glasses. The bulk moduli also vary as a negative power function of the mean atomic volume. The Debye temperature varies linearly with the glass transition temperature. The implications of the observed behavior have been discussed.
Resumo:
The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Silicon Tetrachloride/Sodium Iodide as a Convenient and Highly Regioselective Ether Cleaving Reagent
Resumo:
Abstract is not available.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented