32 resultados para Self-presentation in art
Resumo:
Eutectic growth is an interesting example for exploring the topic of pattern-formation in multi-phase systems, where the growth of the phases is coupled with the diffusive transport of one or more components in the melt. While in the case of binary alloys, the number of possibilities are limited (lamellae, rods, labyrinth etc.), their number rapidly increases with the number of components and phases. In this paper, we will investigate pattern formation during three-phase eutectic solidification using a state-of-the art phase-field method based on the grand-canonical density formulation. The major aim of the study is to highlight the role of two properties, which are the volume fraction of the solid phases and the solid-liquid interfacial energies, in the self-organization of the solid phases during directional growth. Thereafter, we will show representative phase-field simulations of a micro-structure in a real alloy (Ag-Al-Cu) using an asymmetric phase diagram as well as interfacial properties.
Resumo:
The technique of micellar compartmentalization has been used to inhibit the diffusion-controlled self-quenching process in thioketones. By adjusting the ratio of the bulk concentration of the thioketone solute to the bulk concentration of micelles multiple occupancy of the micelles was avoided. Under these conditions enhanced phosphorescence intensity was observed in nitrogen-purged micellar solutions compared with that in acetonitrile solutions, indicating that the thioketone triple was indeed protected from deactivation by a ground statet
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.
Resumo:
This brief account highlights the notable findings of our investigation into the supramolecular chemistry of conformationally locked polycyclitols in the solid state. The study was aimed at analyzing the crystal packing and unraveling the modalities of non-covalent interactions (particularly, intramolecular vis-a-vis intermolecular OH center dot center dot center dot O hydrogen bonds) in polyols. The know-how obtained thereof, was successfully utilized to engineer self-assemblies of designer polycyclitols, having hydrogen bond donors and acceptors fettered onto a trans-decalin scaffold. The results seek to draw particular attention to the intrinsic attribute of this rigid carbocyclic framework to lock functional groups into spatially invariant positions and bring potential intramolecular hydrogen bonding partners into favorable interaction geometry to engender predictability in the self-assembly patterns.
Resumo:
We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
Resumo:
The selective formation of a single isomer of a 3+2] self-assembled organic cage from a reaction mixture of an unsymmetrical aldehyde and a flexible amine is discussed. The experimental and theoretical findings suggest that in such a process, the geometric features of the aldehyde play a key role.
Resumo:
We study a positivity condition for the curvature of oriented Riemannian 4-manifolds: the half-PIC condition. It is a slight weakening of the positive isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore. We observe that the half-PIC condition is preserved by the Ricci flow and satisfies a maximality property among all Ricci flow invariant positivity conditions on the curvature of oriented 4-manifolds. We also study some geometric and topological aspects of half-PIC manifolds.
Resumo:
The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.
Resumo:
A novel universal approach to understand the self-deflagration in solids has been attempted by using basic thermodynamic equation of partial differentiation, where burning mte depends on the initial temperature and pressure of the system. Self-deflagrating solids are rare and are reported only in few compounds like ammonium perchlorate (AP), polystyrene peroxide and tetrazole. This approach has led us to understand the unique characteristics of AP, viz. the existence of low pressure deflagration limit (LPL 20 atm), hitherto not understood sufficiently. This analysis infers that the overall surface activation energy comprises of two components governed by the condensed phase and gas phase processes. The most attractive feature of the model is the identification of a new subcritical regime I' below LPL where AP does not burn. The model is aptly supported by the thermochemical computations and temperature-profile analyses of the combustion train. The thermodynamic model is further corroborated from the kinetic analysis of the high pressure (1-30 atm) DTA thermograms which affords distinct empirical decomposition rate laws in regimes I' and 1 (20-60 atm). Using Fourier-Kirchoff one dimensional heat transfer differential equation, the phase transition thickness and the melt-layer thickness have been computed which conform to the experimental data.
Resumo:
A scheme for built-in self-test of analog signals with minimal area overhead for measuring on-chip voltages in an all-digital manner is presented. The method is well suited for a distributed architecture, where the routing of analog signals over long paths is minimized. A clock is routed serially to the sampling heads placed at the nodes of analog test voltages. This sampling head present at each test node, which consists of a pair of delay cells and a pair of flip-flops, locally converts the test voltage to a skew between a pair of subsampled signals, thus giving rise to as many subsampled signal pairs as the number of nodes. To measure a certain analog voltage, the corresponding subsampled signal pair is fed to a delay measurement unit to measure the skew between this pair. The concept is validated by designing a test chip in a UMC 130-nm CMOS process. Sub-millivolt accuracy for static signals is demonstrated for a measurement time of a few seconds, and an effective number of bits of 5.29 is demonstrated for low-bandwidth signals in the absence of sample-and-hold circuitry.
Resumo:
The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.