189 resultados para Self-disclosure
Resumo:
We demonstrate the phenomenon of self-organized criticality (SOC) in a simple random walk model described by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have obtained power laws in the time intervals between consecutive events of "digging." Being a simple random walk, the power laws in space translate to power laws in time. We also study the finite size scaling of asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively from the cascade models of SOC.
Resumo:
We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure
Resumo:
The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.
Resumo:
Seven L-phenylalanine based alkyl (monopolar) and alkanediyl (bipolar) derivatives are synthesized; while the bipolar urethane amides form gels and show strong adhesive properties, the monopolar analogues form fibrous nanoscopic cloth-like tapes.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
The self-assembly reaction of a cis-blocked 90° square planar metal acceptor with a symmetrical linear flexible linker is expected to yield a [4 + 4] self-assembled square, a [3 + 3] assembled triangle, or a mixture of these.However, if the ligand is a nonsymmetrical ambidentate, it is expected to form a complex mixture comprising several linkage isomeric squares and triangles as a result of different connectivities of the ambidentate linker. We report instead that the reaction of a 90° acceptor cis-(dppf)Pd(OTf)2 [where dppf ) 1,1′-bis(diphenylphosphino)- ferrocene] with an equimolar amount of the ambidentate unsymmetrical ligand Na-isonicotinate unexpectedly yields a mixture of symmetrical triangles and squares in the solution. An analogous reaction using cis-(tmen)Pd(NO3)2 instead of cis-(dppf)Pd(OTf)2 also produced a mixture of symmetrical triangles and squares in the solution. In both cases the square was isolated as the sole product in the solid state, which was characterized by a single crystal structure analysis. The equilibrium between the triangle and the square in the solution is governed by the enthalpic and entropic contributions. The former parameter favors the formation of the square due to less strain in the structure whereas the latter one favors the formation of triangles due to the formation of more triangles from the same number of starting linkers. The effects of temperature and concentration on the equilibria have been studied by NMR techniques. This represents the first report on the study of square-triangle equilibria obtained using a nonsymmetric ambidentate linker. Detail NMR spectroscopy along with the ESI-mass spectrometry unambiguously identified the components in the mixture while the X-ray structure analysis determined the solid-state structure.
Resumo:
Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.
Resumo:
We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion- induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor.
Resumo:
The coordination driven self-assembly of discrete molecular triangles from a non-symmetric ambidentate linker 5-pyrimidinecarboxylate (5-pmc) and Pd(II)/Pt(II) based 90◦ acceptors is presented. Despite the possibility of formation of a mixture of isomeric macrocycles (linkage isomers) due to different connectivity of the ambidentate linker, formation of a single and symmetrical linkage somer in both the cases is an interesting observation. Moreover, the reported macrocycles represent the first example of discrete metallamacrocycles of bridging 5-pmc. While solution composition in both the cases was characterised by multinuclear NMR study and electrospray ionization mass spectrometry (ESI-MS), the identity of the assemblies in the solid state was established by X-ray single crystals structure analysis. Variable temperature NMR study clearly ruled out the formation of any other macrocycles by [4 + 4] or [2 + 2] self-assembly of the reacting components.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
Novel self-supported natural and synthetic polymer membranes of chitosan-hydroxy ethyl Cellulose-montmorillonite (CS-HEC-MMT) and polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30 degrees C and 70 degrees C and their performances are compared with commercial Nafion membranes. High hater fluxes with desired humidified-air output have been achieved for CS-HEC-MMT and PVA-PSSA hybrid membranes at air-flow rates of 1-10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux With respect to air-flow rates are also quantified for all the membranes. Water flux values for CS-HEC-MMT are less than those for Nafion (R) and PVA-PSSA membranes, but the operational Stability of CS-HEC-MMT membrane is higher than PVA-PSSA and comparable with Nafion (R) both of which can operate up to 70 degrees C at repetitive cycles of humidification.
Resumo:
The self-similar solution of the unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point with mass transfer has been obtained when the free-stream velocity varies inversely as a linear function of time. The resulting ordinary differential equations have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the parameter characterizing the unsteadiness in the free-stream velocity. The velocity profiles show some features not encountered in steady flows.
Resumo:
Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.
Resumo:
We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.