135 resultados para Self-consistent field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation-and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH2, CF3, and COOH substituents) molecules paired with NH3 (referred as ACl:NH3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation-and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31+G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl center dot center dot center dot NH3 complex, the hole is predicted to migrate from the NH3-end to the ClCN-end of the NCCl center dot center dot center dot NH3 complex in approximately 0.5 fs on the D-0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H2NCl:NH3, F3CCl:NH3, and HOOCCl:NH3, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH3 and HOCl:NH3 complexes do not exhibit any charge migration following vertical ionization to the D-0 cation state, pointing to interesting halogen bond strength-dependent charge migration. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytic treatment of localization in a weakly disordered system is presented for the case where the real lattice is approximated by a Cayley tree. Contrary to a recent assertion we find that the mobility edge moves inwards into the band as disorder increases from zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and spectral properties of hexagonal NiS have been studied in the high temperature paramagnetic phase and low temperature anti-ferromagnetic phase. The calculations have been performed using charge self-consistent density-functional theory in local density approximation combined with dynamical mean-field theory (LDA+DMFT). The photoemission spectra (PES) and optical properties have been computed and compared with the experimental data. Our results show that the dynamical correlation effects are important to understand the spectral and optical properties of NiS. These effects have been analyzed in detail by means of the computed real and imaginary part of the self-energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many grand unified theories (GUT's) predict non-Abelian monopoles which are sources of non-Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological obstructions to the global implementation of the action of the "unbroken symmetry group" H on a classical test particle in the field of such a monopole. In this paper, the existence of similar topological obstructions to the definition of H action on the fields in such a monopole sector, as well as on the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail. Some subgroups of H which can be globally realized as groups of automorphisms are identified. We also discuss the application of our analysis to the SU(5) GUT and show in particular that the non-Abelian monopoles of that theory break color and electroweak symmetries.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the different types of superfluid phases that can arise in the spin-1 case. In particular, our mean-field theory can distinguish polar and ferromagnetic superfluids, Mott insulator, that arise at integer fillings at zero temperature, and normal Bose liquids into which the Mott insulators evolve at finite temperatures. We find, in contrast to the spinless case, that several of the superfluid-Mott insulator transitions are of first order at finite temperatures. Our systematic study yields rich phase diagrams that include first-order and second-order transitions and a variety of tricritical points. We discuss the possibility of realizing such phase diagrams in experimental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum cell models for delocalized electrons provide a unified approach to the large NLO responses of conjugated polymers and pi-pi* spectra of conjugated molecules. We discuss exact NLO coefficients of infinite chains with noninteracting pi-electrons and finite chains with molecular Coulomb interactions V(R) in order to compare exact and self-consistent-field results, to follow the evolution from molecular to polymeric responses, and to model vibronic contributions in third-harmonic-generation spectra. We relate polymer fluorescence to the alternation delta of transfer integrals t(1+/-delta) along the chain and discuss correlated excited states and energy thresholds of conjugated polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this potential, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator (MI), density-wave (DW), and supersolid (SS) phases in the plane of the chemical potential mu and on-site repulsion U; we present phase diagrams for representative values of V, the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI, DW, and SS phases. We explore the implications of our study for experiments on cold-atom dipolar condensates in optical lattices in a confining potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)pi sigma* excited state with the bound (1)pi pi* excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)pi pi*-(1)pi sigma* and (1)pi sigma*-S-0 conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S-0, (1)pi pi*, (1)pi sigma*) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)pi pi* and (1)pi sigma* states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)sigma/(2)pi electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (nu(16a)) and ring-distortion (nu(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4709608]