246 resultados para Selective Catalytic-reduction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalytic reduction of graphene oxide (GO) by glutathione peroxidase (GPx) mimics is reported. This study reveals that GO contains peroxide functionalities, in addition to the epoxy, hydroxyl and carboxylic acid groups that have been identified earlier. It also is shown that GO acts as a peroxide substrate in the GPx-like catalytic activity of organoselenium/tellurium compounds. The reaction of tellurol, generated from the corresponding ditelluride, reduces GO through the glutathione (GSH)-mediated cleavage of the peroxide linkage. The mechanism of GO reduction by the tellurol in the presence of GSH involves the formation of a tellurenic acid and tellurenyl sulfide intermediates. Interestingly, the GPx mimics also catalyze the decarboxylation of the carboxylic acid functionality in GO at ambient conditions. Whereas the selenium/tellurium-mediated catalytic reduction/decarboxylation of GO may find applications in bioremediation processes, this study suggests that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of aliphatic and aromatic ketoaldehydes were reduced to the corresponding ketoalcohols with a mixture of sodium borohydride (1.2 equivalents) and sodium carbonate (sixfold molar excess) in water. Reactions were performed at room temperatures over (typically) 2 h, and yields of isolated products generally ranged from 70% to 85%. A biscarbonate-borane complex, (BH3)(2)CO2](2-) 2Na(+), possibly formed from the reagent mixture, is likely the active reductant. The moderated reactivity of this acylborane species would explain the chemoselectivity observed in the reactions. The readily available reagents and the mild aqueous conditions make for ease of operation and environmental compatibility, and make a useful addition to available methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discharge plasma-chemical hybrid process for NOinfinity removal from the flue gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by ac or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads; is used to approximately simulate the flue gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO2, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO2 will be totally converted to N-2 and Na-2 SO4 using Na-2 SO3. The ac packed-bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (similar to 100 ppm). When the engine load exceeds 50% (NO > 300 ppm) there was not much decrease in NO reduction and more or less all the reactors performed equally. The total operating cost of the plasma-chemical hybrid system becomes $4010/ton of NO, which is 1/3-1/5 of the conventional selective catalytic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx) from diesel engine exhaust operated under different load conditions. Initial studies were focused on plasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at various temperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust was treated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust was treated. Studies were then made with plasma reactor combined with a catalytic reactor consisting of a selective catalytic reduction (SCR) catalyst, V2O5/TiO2. Ammonia was used as a reducing agent for SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCR catalytic reactor below 200°C. The plasma-assisted catalytic reactor was operated well to remove NOx under no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficiencies obtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperature of 100°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discharge plasma-chemical hybrid process for NO/sub x/ removal from the due gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by AC or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads, is used to approximately simulate the due gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO/sub 2/, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO/sub 2/ will be totally converted to N/sub 2/ and Na/sub 2/SO/sub 4/ using Na/sub 2/SO/sub 3/. The AC packed bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (/spl sim/100 ppm). At high engine loads (NO>300 ppm) there was not much decrease in NO/sub x/ reduction and more or less all the reactors performed equally. The paper discusses these observations in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A combination of benzyltriethylammonium borohydride and chlorotrimethylsilane (1:1) in dichloromethane (0-25°C) has been found to be a convenient reagent system for the selective reduction of carboxylic acids to alcohols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate an ultrafast method for the formation of, graphene supported Pt catalysts by the co-reduction of graphene oxide and Pt salt using ethylene glycol under microwave irradiation conditions. Detailed analysis of the mechanism of formation of the hybrids indicates a synergistic co-reduction mechanism whereby the presence of the Pt ions leads to a faster reduction of GO and the presence of the defect sites on the reduced GO serves as anchor points for the heterogeneous nucleation of Pt. The resulting hybrid consists of ultrafine nanoparticles of Pt uniformly distributed on the reduced GO susbtrate. We have shown that the hybrid exhibits good catalytic activity for methanol oxidation and hydrogen conversion reactions. The mechanism is general and applicable for the synthesis of other multifunctional hybrids based on graphene.