104 resultados para Seismic facies
Resumo:
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter `b' has been evaluated considering the available earthquake data using (1) Gutenberg-Richter (G-R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The `b' parameter was estimated to be 0.62 to 0.98 from G-R relation and 0.87 +/- A 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the `b' values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km x 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.
Resumo:
This paper presents the site classification of Bangalore Mahanagar Palike (BMP) area using geophysical data and the evaluation of spectral acceleration at ground level using probabilistic approach. Site classification has been carried out using experimental data from the shallow geophysical method of Multichannel Analysis of Surface wave (MASW). One-dimensional (1-D) MASW survey has been carried out at 58 locations and respective velocity profiles are obtained. The average shear wave velocity for 30 m depth (Vs(30)) has been calculated and is used for the site classification of the BMP area as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs(30) values major part of the BMP area can be classified as ``site class D'', and ``site class C'. A smaller portion of the study area, in and around Lalbagh Park, is classified as ``site class B''. Further, probabilistic seismic hazard analysis has been carried out to map the seismic hazard in terms spectral acceleration (S-a) at rock and the ground level considering the site classes and six seismogenic sources identified. The mean annual rate of exceedance and cumulative probability hazard curve for S. have been generated. The quantified hazard values in terms of spectral acceleration for short period and long period are mapped for rock, site class C and D with 10% probability of exceedance in 50 years on a grid size of 0.5 km. In addition to this, the Uniform Hazard Response Spectrum (UHRS) at surface level has been developed for the 5% damping and 10% probability of exceedance in 50 years for rock, site class C and D These spectral acceleration and uniform hazard spectrums can be used to assess the design force for important structures and also to develop the design spectrum.
Resumo:
The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.
Resumo:
A method is presented to find nonstationary random seismic excitations with a constraint on mean square value such that the response variance of a given linear system is maximized. It is also possible to incorporate the dominant input frequency into the analysis. The excitation is taken to be the product of a deterministic enveloping function and a zero mean Gaussian stationary random process. The power spectral density function of this process is determined such that the response variance is maximized. Numerical results are presented for a single-degree system and an earth embankment modeled as shear beam.
Resumo:
The region around Waclakkancheri, in the province of Kerala, India, which lies in the vicinity of Palghat-Cauvery ;hear zone (within the Precambrian crystalline terrain), has been a site of microseismic activity since 1989. Earlier studies had identified a prominent WNW-ESE structure overprinting on the E-W trending lineaments associated with Palghat-Cauvery shear zone. We have mapped this structure, located in a chamockite quarry near Desamangalam, Waclakkancheri, which we identify as a ca. 30 km-long south dipping reverse fault. This article presents the characteristics of this fault zone exposed on the exhumed crystalline basement and discusses its significance in understanding the earthquake potential of the region. This brittle deformation zone consists of fracture sets with small-scale displacement and slip planes with embedded fault gouges. The macroscopic as well as the microscopic studies of this fault zone indicate that it evolved through different episodes of faulting in the presence of fluids. The distinct zones within consolidated gouge and the cross cutting relationship of fractures indicate episodic fault activity. At least four faulting episodes can be recognized based on the sequential development of different structural elements in the fault rocks. The repeated ruptures are evident along this shear zone and the cyclic behavior of this fault consists of co-seismic ruptures alternating with inter-seismic periods, which is characterized by the sealed fractures and consolidated gouge. The fault zone shows a minimum accumulated dip/oblique slip of 2.1 m in the reverse direction with a possible characteristic slip of 52 cm (for each event). The ESR dating of fault gouge indicates that the deformation zone records a major event in the Middle Quaternary. The empirical relationships between fault length and slip show that this fault may generate events M >= 6. The above factors suggest that this fault may be characterized as potentially active. Our study offers some new pointers that can be used in other slow deforming cratonic hinterlands in exploring the discrete active faults.
Resumo:
The behavior of pile foundations in non liquefiable soil under seismic loading is considerably influenced by the variability in the soil and seismic design parameters. Hence, probabilistic models for the assessment of seismic pile design are necessary. Deformation of pile foundation in non liquefiable soil is dominated by inertial force from superstructure. The present study considers a pseudo-static approach based on code specified design response spectra. The response of the pile is determined by equivalent cantilever approach. The soil medium is modeled as a one-dimensional random field along the depth. The variability associated with undrained shear strength, design response spectrum ordinate, and superstructure mass is taken into consideration. Monte Carlo simulation technique is adopted to determine the probability of failure and reliability indices based on pile failure modes, namely exceedance of lateral displacement limit and moment capacity. A reliability-based design approach for the free head pile under seismic force is suggested that enables a rational choice of pile design parameters.
Resumo:
This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.
Resumo:
The paper focuses on the reliability-based design optimization of gravity wall bridge abutments when subjected to active condition during earthquakes. An analytical study considering the effect of uncertainties in the seismic analysis of bridge abutments is presented. Planar failure surface has been considered in conjunction with the pseudostatic limit equilibrium method for the calculation of the seismic active earth pressure. Analysis is conducted to evaluate the external stability of bridge abutments when subjected to earthquake loads. Reliability analysis is used to estimate the probability of failure in three modes of failure viz. sliding failure of the wall on its base, overturning failure about its toe (or eccentricity failure of the resultant force) and bearing failure of foundation soil below the base of wall. The properties of backfill and foundation soil below the base of abutment are treated as random variables. In addition, the uncertainties associated with characteristics of earthquake ground motions such as horizontal seismic acceleration and shear wave velocity propagating through backfill soil are considered. The optimum proportions of the abutment needed to maintain the stability are obtained against three modes of failure by targeting various component and system reliability indices. Studies have also been made to study the influence of various parameters on the seismic stability.
Resumo:
Seismic microzonation has generally been recognized as the most accepted tool in seismic hazard assessment and risk evaluation. In general, risk reduction can be done by reducing the hazard, the vulnerability or the value at risk. Since the earthquake hazard can not be reduced, one has to concentrate on vulnerability and value at risk. The vulnerability of an urban area / municipalities depends on the vulnerability of infrastructure and redundancies within the infrastructure. The earthquake risk is the damage to buildings along with number of people that are killed / hurt and the economic losses during the event due to an earthquake with a return period corresponding to this time period. The principal approaches one can follow to reduce these losses are to avoid, if possible, high hazard areas for the siting of buildings and infrastructure, and further ensure that the buildings and infrastructure are designed and constructed to resist expected earthquake loads. This can be done if one can assess the hazard at local scales. Seismic microzonation maps provide the basis for scientifically based decision-making to reduce earthquake risk for Govt./public agencies, private owners and the general public. Further, seismic microzonation carried out on an appropriate scale provides a valuable tool for disaster mitigation planning and emergency response planning for urban centers / municipalities. It provides the basis for the identification of the areas of the city / municipality which are most likely to experience serious damage in the event of an earthquake.
Resumo:
Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.
Resumo:
This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.
Resumo:
Seismic passive earth pressure coefficients were computed by the method of limit equilibrium using a pseudostatic approach for seismic forces. Composite curved rupture surfaces were considered in the analysis. While earlier studies using this type of analysis were mainly for sands, seismic passive earth pressure coefficients were obtained in the present study considering the effects of cohesion, surcharge, and own weight. The minimum seismic passive force was obtained by adding the individual minimum values of these components and the validity of the principle of superposition was examined. Other parameters considered in the analysis were wall batter angle, ground surface slope, soil friction angle, wall friction angle, wall adhesion to soil cohesion ratio, and horizontal and vertical seismic accelerations. The seismic earth pressure coefficients were found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and vertical directions. Results of the study are presented in the form of figures and tables. Comparisons of the proposed method with available theories in the seismic case are also presented.
Resumo:
Different seismic hazard components pertaining to Bangalore city,namely soil overburden thickness, effective shear-wave velocity, factor of safety against liquefaction potential, peak ground acceleration at the seismic bedrock, site response in terms of amplification factor, and the predominant frequency, has been individually evaluated. The overburden thickness distribution, predominantly in the range of 5-10 m in the city, has been estimated through a sub-surface model from geotechnical bore-log data. The effective shear-wave velocity distribution, established through Multi-channel Analysis of Surface Wave (MASW) survey and subsequent data interpretation through dispersion analysis, exhibits site class D (180-360 m/s), site class C (360-760 m/s), and site class B (760-1500 m/s) in compliance to the National Earthquake Hazard Reduction Program (NEHRP) nomenclature. The peak ground acceleration has been estimated through deterministic approach, based on the maximum credible earthquake of M-W = 5.1 assumed to be nucleating from the closest active seismic source (Mandya-Channapatna-Bangalore Lineament). The 1-D site response factor, computed at each borehole through geotechnical analysis across the study region, is seen to be ranging from around amplification of one to as high as four times. Correspondingly, the predominant frequency estimated from the Fourier spectrum is found to be predominantly in range of 3.5-5.0 Hz. The soil liquefaction hazard assessment has been estimated in terms of factor of safety against liquefaction potential using standard penetration test data and the underlying soil properties that indicates 90% of the study region to be non-liquefiable. The spatial distributions of the different hazard entities are placed on a GIS platform and subsequently, integrated through analytical hierarchal process. The accomplished deterministic hazard map shows high hazard coverage in the western areas. The microzonation, thus, achieved is envisaged as a first-cut assessment of the site specific hazard in laying out a framework for higher order seismic microzonation as well as a useful decision support tool in overall land-use planning, and hazard management. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, an analytical study considering the effect of uncertainties in the seismic analysis of geosynthetic-reinforced soil (GRS) walls is presented. Using limit equilibrium method and assuming sliding wedge failure mechanism, analysis is conducted to evaluate the external stability of GRS walls when subjected to earthquake loads. Target reliability based approach is used to estimate the probability of failure in three modes of failure, viz., sliding, bearing, and eccentricity failure. The properties of reinforced backfill, retained backfill, foundation soil, and geosynthetic reinforcement are treated as random variables. In addition, the uncertainties associated with horizontal seismic acceleration and surcharge load acting on the wall are considered. The optimum length of reinforcement needed to maintain the stability against three modes of failure by targeting various component and system reliability indices is obtained. Studies have also been made to study the influence of various parameters on the seismic stability in three failure modes. The results are compared with those given by first-order second moment method and Monte Carlo simulation methods. In the illustrative example, external stability of the two walls, Gould and Valencia walls, subjected to Northridge earthquake is reexamined.