30 resultados para SU(3) symmetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ampcalculator (AMPC) is a Mathematica (c) based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p(4))) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G(27). Another illustrative set of amplitudes at tree level we provide is in the context of tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intersection of the ten-dimensional fuzzy conifold Y-F(10) with S-F(5) x S-F(5) is the compact eight-dimensional fuzzy space X-F(8). We show that X-F(8) is (the analogue of) a principal U(1) x U(1) bundle over fuzzy SU(3) / U(1) x U(1)) ( M-F(6)). We construct M-F(6) using the Gell-Mann matrices by adapting Schwinger's construction. The space M-F(6) is of relevance in higher dimensional quantum Hall effect and matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in the basis of SU(3) eigenvectors. We construct the Dirac operator on M-F(6) from the Ginsparg-Wilson algebra on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results in the continuum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monopoles which are sources of non-Abelian magnetic flux are predicted by many models of grand unification. It has been argued elsewhere that a generic transformation of the "unbroken" symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In this paper, we show that similar topological obstructions are encountered in the mechanics of a test particle in the field of these monopoles and that the transformations of H cannot all be globally implemented as canonical transformations. For the SU(5) model, if H is SU(3)C×U(1)em, a consequence is that color multiplets are not globally defined, while if H is SU(3)C×SU(2)WS×U(1)Y, the same is the case for both color and electroweak multiplets. There are, however, several subgroups KT, KT′,… of H which can be globally implemented, with the transformation laws of the observables differing from group to group in a novel way. For H=SU(3)C×U(1)em, a choice for KT is SU(2)C×U(1)em, while for H=SU(3)C×SU(2)WS×U(1)Y, a choice is SU(2)C×U(1)×U(1)×U(1). The paper also develops the differential geometry of monopoles in a form convenient for computations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent investigations have revealed powerful selection rules for resonant energy transfer between modes of nonlinear perturbations in global anti-de Sitter (AdS) space-time. It is likely that these selection rules are due to the highly symmetric nature of the underlying AdS background, though the precise relation has remained unclear. In this article, we demonstrate that the equation satisfied by the scalar field mode functions in AdS(d+1) has a hidden SU(d) symmetry, and explicitly specify the multiplets of this SU(d) symmetry furnished by the mode functions. We also comment on the role this structure might play in explaining the selection rules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We revisit the rare kaon decays K -> pi l(+)l(-) which are of special interest due to the recent measurements of the charged kaon decay spectra. We compute the contribution of the 27-plet to the decay amplitudes in one loop SU(3) chiral perturbation theory. We estimate the resulting impact to be similar to 10% to the branching ratios of the charged kaon decays, and also noticeably influence the shape of the spectra. With current values of the constants G(8) associated with the octet and G(27) associated with the 27-plet, the contribution of the latter pushes the spectrum in the correct direction, towards the charged lepton spectra. We also discuss the impact for neutral decay rates and spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the thermodynamic properties of recently constructed black hole solutions in SL(3, R) x SL(3, R) Chern-Simons theory in the presence of a chemical potential for spin-3 charge, which acts as an irrelevant deformation of the dual CFT with W-3 X W-3 symmetry. The smoothness or holonomy conditions admit four branches of solutions describing a flow between two AdS(3) backgrounds corresponding to two different CFTs. The dominant branch at low temperatures, connected to the BTZ black hole, merges smoothly with a thermodynamically unstable branch and disappears at higher temperatures. We confirm that the UV region of the flow satisfies the Ward identities of a CFT with W-3((2)) x W-3((2)) symmetry deformed by a spin-3/2 current. This allows to identify the precise map between UV and HI thermodynamic variables. We find that the high temperature regime is dominated by a black hole branch whose thermodynamics can only be consistently inferred with reference to this W-3((2)) x W-3((2)) CFT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3 vertical bar 2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3 vertical bar 2). Using the relation between the bulk field equations and the Ward identities of a CFT with N = 2 super-W-3 symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the N = 2 super-W-3 algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using the Y(gl(m|n)) super Yangian symmetry of the SU(m|n) supersymmetric Haldane-Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin degrees of freedom. As a byproduct of this study of the duality relation, we find a novel combinatorial formula for the super Schur polynomials associated with some irreducible representations of the Y(gl(m|n)) Yangian algebra. Finally, we reveal an intimate connection between the global SU(m|n) symmetry of a spin chain and the boson-fermion duality relation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structure determination at room temperature [292 (2) K] of racemic 1,1'-binaphthalene-2,2'-diyl diethyl bis(carbonate), C26H22O6, showed that one of the terminal carbon-carbon bond lengths is very short [Csp(3)-Csp(3) = 1.327 (6) angstrom]. The reason for such a short bond length has been analysed by collecting data sets on the same crystal at 393, 150 and 90 K. The values of the corrected bond lengths clearly suggest that the shortening is mainly due to positional disorder at two sites, with minor perturbations arising as a result of thermal vibrations. The positional disorder has been resolved in the analysis of the 90 K data following the changes in the unit-cell parameters for the data sets at 150 and 90 K, which appear to be an artifact of a near centre of symmetry relationship between the two independent molecules in the space group P (1) over bar at these temperatures. Indeed, the unit cell at low temperature (150 and 90 K) is a supercell of the room-temperature unit cell.