352 resultados para STABILIZED PLATINUM NANOPARTICLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 degrees C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 mu M. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold-core platinum-shell (Au@Pt) nanoparticles with ultrathin platinum overlayers, ranging from submonolayer to two monolayers of platinum atoms, were prepared at room-temperature using a scalable, wet-chemical synthesis route. The synthesis involved the reduction of chloroauric acid with tannic acid to form 5 nm (nominal dia.) gold nanoparticles followed by addition of desired amount of chloroplatinic acid and hydrazine to form platinum overlayers with bulk Pt/Au atomic ratios (Pt surface coverages) corresponding to 0.19 (half monolayer), 0.39 (monolayer), 0.58 (1.5 monolayer) and 0.88 (2 monolayers). The colloidal particles were coated with octadecanethiol and phase-transferred into chlroform-hexane mixture to facilitate sample preparation for structural characterization. The structure of the resultant nanoparticles were determined to be Au@Pt using HRTEM, SAED, XPS, UV-vis and confirmed by cyclic voltammetry (CV) studies. Monolayers of octadecanethiol coated Au@Pt nanoparticles were self-assembled at an air-water interface and transfer printed twice onto a gold substrate to form bilayer films for electrochemical characterization. Electrochemical activity on such films was observed only after the removal of the octadecanethiol ligand coating the nanoparticles, using a RF plasma etching process. The electrochemical activity (HOR, MOR studies) of Au@Pt nanoparticles was found to be highest for particles having a two atom thick platinum overlayer. These nanoparticles can significantly enhance platinum utilization in electrocatalytic applications as their platinum content based activity was three times higher than pure platinum nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enrichment of metallic single-walled carbon nanotubes (SWNTs) has been accomplished by several means, including new extraction and synthetic procedures and by interaction with metal nanoparticles as well as electron donor molecules. In the presence of Fe(CO)(5) the arc discharge method yields nearly pure metallic nanotubes. Fluorous chemistry involving the preferential diazotization of metallic SWNTs offers a good procedure of obtaining the pure metallic species. Interaction of gold or platinum nanoparticles as well as of electron-donor molecules such as aniline and tetrathiafulvalene (TTF) transform semiconducting SWNTs into metallic ones. Raman and electroni spectroscopies provide ideal means to monitor enrichment of metallic SWNTs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A composite of mesoporous carbon (MC) with poly(3,4-ethylenedioxythiophene) (PEDOT) is studied as catalyst support for platinum nanoparticles. The durability of commercial Pt/carbon and Pt/MC-PEDOT as cathode catalyst is investigated by invoking air-fuel boundary at the anode side so as to foster carbon corrosion at the cathode side of a polymer electrolyte fuel cell (PEFC). Pt/MC-PEDOT shows higher resistance to carbon corrosion in relation to Pt/C. Electrochemical techniques such as cyclic voltammetry (CV) and impedance measurements are used to evaluate the extent of degradation in the catalyst layer. It is surmised that the resistance of MC-PEDOT as catalyst support toward electrochemical oxidation makes Pt/MC-PEDOT a suitable and stable cathode catalyst for PEFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A single step process for the synthesis of size-controlled silver nanoparticles has been developed using a bifunctional molecule, octadecylamine (ODA). Octadecylamine complexes to Ag+ ions electrostatically, reduce them, and subsequently stabilizes the nanoparticles thus formed. Hence, octadecylamine simultaneously functions as both a reducing and a stabilizing agent. The amine-capped nanoparticles can be obtained in the form of dry powder, which is readily redispersible in aqueous and organic solvents. The particle size, and the nucleation and growth kinetics of silver nanoparticles could be tuned by varying the molar ratio of ODA to AgNO3. The UV-vis spectra of nanoparticles prepared with different concentrations of ODA displayed the well-defined plasmon band with maximum absorption around 425 nm. The formation of silver metallic nanoparticles was confirmed by their XRD pattern. The binding of ODA molecule on the surface of silver has been studied by FT-IR and NMR spectroscopy. The formation of well-dispersed spherical Ag nanoparticles has been confirmed by TEM analysis. The particle size and distribution are found to be dependent on the molar concentration of the amine molecule. Open aperture z-scans have been performed to measure the nonlinearity of Ag nanoparticles. (C) 2015 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of similar to 2 nm, while silver particles have 4-5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly uniform, stable nanobimetallic dispersions are prepared in a single si ep in the form of sols, gels, and monoliths, using organically modified silicates as the matrix and the stabilizer. The Pt-Pd bimetallic dispersions are characterized by W-vis, TEM, SEM, and XRD measurements. The evolution of silicate was followed by IR spectroscopy. XPS and CO adsorption studies reveal that the structure of the particles consists of a palladium core and a platinum shell. Electrocatalysis of ascorbic acid oxidation has been demonstrated using thin films of silicate containing the nanobimetal particles on a glassy carbon electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of ``smart structured'' conducting polymers and the fabrication of devices using them are important areas of research. However, conducting polymeric materials that are used in devices are susceptible to degradation due to oxygen and moisture. Thus, protection of such devices to ensure long-term stability is always desirable. Polymer nanocomposites are promising materials for the encapsulation of such devices. Therefore, it is important to develop suitable polymer nanocomposites as encapsulation materials to protect such devices. This work presents a technique based on grafting between surface-decorated gamma-alumina nanoparticles and polymer to make nanocomposites that can be used for the encapsulation of devices. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride-terminated polydimethylsiloxane) through a platinum-catalyzed hydrosilylation reaction. Fourier transform infrared spectroscopy, X-ray-photoelectron spectroscopy, and Raman spectroscopy were used to characterize the surface chemistry of the nanoparticles after surface modification. The grafting density of alkene groups on the surface of the modified nanoparticles was calculated using CHN and thermogravimetric analyses. The thermal stability of the composites was also evaluated using thermogravimetric analysis. The nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using a density gradient column, and the morphology of the composites was evaluated by scanning electron microscopy. All of our studies reveal that the composites have good thermal stability and mechanical flexibility and, thus, can potentially be used for the encapsulation of organic photovoltaic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pd-coated Ni nanoparticles of 50 +/- 15 nm size are prepared by the polyol method and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry analysis. Surface coverage of Pd on Ni particles is less than a monolayer for 0.5 and 1 at% Pd-coated Ni. Quantitative conversion of nitrobenzene to aniline is observed over these Pd-coated Ni particles at 27degreesC under one atmospheric pressure of hydrogen. 0.5 and 1 at% Pd-coated Ni exhibits 10 times greater activity than that of typical colloidal palladium and platinum catalysts and 2.5 times higher activity than commercial 5 wt% Pd/C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.