74 resultados para SCANNING ELECTRON MICROSCOPY AND STARCH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examination of the structure of worn surfaces has shown that the wear of LM13 and LM13-graphite particulate composite is controlled by the nature and extent of subsurface deformation. The addition of graphite influences the wear characteristics by affecting the plastically deformed zone. The possible mechanisms of wear are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pin-on-disc machine was used to wear Al-Si alloy pins under dry conditions. Unmodified and modified binary alloys and commercial multi-component alloys were tested. The surfaces of the worn alloys were examined by scanning electron microscopy to identify distinct topographical features to aid elucidation of the mechanisms of wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of icosahedral twins has been established in Al-10at.% Mn alloy. By a stereographic approach a close resemblance to the decagonal phase is pointed out. The simulation of twin diffraction patterns has been done based on the projection formalism. The physical significance of twinning in terms of hyperdimensional projection is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning tunneling microscopy of C-70 films deposited on HOPG and gold substrates has been carried but to investigate the 2D packing, defects and disorder. Besides providing direct evidence for orientational disorder, high resolution; images showing the carbon skeleton as well as the molecular arrangement in a solid solution of C-70 and C-60 are presented. Tunneling conductance measurements Indicate a small gap in the C-70 film deposited on HOPG substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first disordered at 1398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D-2h(25)-Ni2W and DO22-Ni3W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1103 and 1213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1093 K. Distinct Ni4W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni4W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of grain boundaries and other growth related microstructure in manganite films, a scanning tunneling microscope is used to simultaneously probe surface topography and local potential distribution under current flow at nanometer level in films of epitaxial thin films of La0.7Ca0.3MnO3 deposited on single crystal SrTiO3 and NdGaO3 substrate by laser ablation. We have studied two types of films strained and strain relaxed. Thin (50nm) films (strained due to lattice mismatch between substrate and the film) show step growth (unit cell steps) and have very smooth surfaces. Relatively thicker films (strain relaxed, thickness 200nm) do not have these step growths and show rather smooth well connected grains. Charge transport in these films is not uniform on the nanometer level and is accompanied by potential jumps at the internal surfaces. In particular scattering from grain boundaries results in large variations in the local potential resulting in fields as high as 104-105V/cm located near the grain boundaries. We discuss the role of local strain and strain inhomogeneties in determining the current transport in these films and their resistance and magnetoresistivity. In this paper we attempt to correlate between bulk electronic properties with microscopic electronic conduction using scanning tunneling microscopy and scanning tunneling potentiometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition was used for synthesizing 200 nm diameter Fe3O4-Ag nanotubes. Compositional analysis at the single nanotube level revealed a fairly uniform distribution of component elements in the nanotube microstructure. As-synthesized Fe3O4-Ag nanotubes were superparamagnetic in nature. Electron diffraction revealed the ultrafine nanocrystalline microstructure of the nanotubes. The effect of Ag on the anti-microbial response of the nanotubes was investigated by comparing the effect of sulphate reducing bacteria (SRB) on Fe3O4-Ag and Fe3O4 nanotubes. Fe3O4 nanotubes were also electro-deposited in the present study. It was observed that the Fe3O4-Ag nanotubes exhibited good resistance to sulphate reducing bacteria which revealed the anti-microbial nature of the Fe3O4-Ag nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparation and characterization of the fullerenes, C60 and C70, are described in detail, including the design of the generators fabricated locally. The characterization techniques employed are UV-visible, IR, Raman and C-13 NMR spectroscopies, scanning as well as transmission electron microscopy and mass spectrometry. The electron energy level diagram of C60 as well as the one-electron reductions of C60 and C70 leading to various anions are discussed. Electronic absorption spectra of C60- and C60(2-) are reported. Phase transitions from the plastic to the crystalline states of C60 and C70 are examined. Based on a C-13 NMR study in a mixture of nematic liquid crystals, it has been demonstrated that C60 retains its extraordinary symmetry in solution phase as well. Interaction of C60 and C70 with strong electron-donor molecules has been investigated employing cyclic voltammetry. Superconductivity of K(x)C60 has been studied by non-resonant microwave absorption; Na(x)C60 as well as K(c)C70 are shown to be non-superconducting. Doping C60 with iodine does not make it superconducting. Interaction of C60 with SbCl5 and liquid Br2 gives rise to halogenated products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution of crystallographic texture in the orthorhombic phase of a two-phase alloy Ti–22Al–25Nb (at%), consisting of orthorhombic (O) and bcc (β/B2) phases, was studied. The material was subjected to deformation in two-phase field as well as in the single β phase field. The resulting evolution of microstructure and crystallographic texture were recorded using scanning electron microscopy and X-ray diffraction. The orthorhombic phase underwent change in morphology (from platelets to equiaxed) on rolling in the two-phase field with the texture getting sharper with the amount of deformation. Rolling above β transus temperature led to hot deformation of single β phase microstructure and its subsequent cooling produced transformed coarse platelets of orthorhombic phase with texture in orientation relation with the high temperature deformed β phase.