32 resultados para River water
Resumo:
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low- flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga-Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte-Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga-Bhadra river system in southern India, with a steady state BOD-DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.
Resumo:
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Resumo:
River water composition (major ion and Sr-87/Sr-86 ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L-1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L-1), with radiogenic Sr-87/Sr-86 isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and Sr-87/Sr-86 and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and Sr-87/Sr-86 isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and Sr-87/Sr-86 isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Resumo:
Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.
Resumo:
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p <= 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51 % (n=793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46 % (n=273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85 % (n=107), 94.49 % (n=103), and 90.22 % (n=157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of blaTEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.
Resumo:
It is shown that a leaky aquifer model can be used for well field analysis in hard rock areas, treating the upper weathered and clayey layers as a composite unconfined aquitard overlying a deeper fractured aquifer. Two long-duration pump test studies are reported in granitic and schist regions in the Vedavati river basin. The validity of simplifications in the analytical solution is verified by finite difference computations.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
A survey of amphibian mortality on roads was carried out in the Sharavathi river basin in the central Western Ghats. Road kills in three different land use areas: agricultural fields, water bodies and forests were recorded for four days along three 100m stretches in each type of area. One-hundred-and-forty-four individuals belonging to two orders, eight families, 11 genera and 13 species were recorded in the survey. Kills/km observed were: in forest 55, agricultural fields 38 and water bodies 27, for an overall average of 40 kills/km. Kill species compositions varied significantly between land use areas, but not overall kill rates.
Resumo:
A survey of amphibian mortality on roads was carried out in the Sharavathi river basin in the central Western Ghats. Road kills in three different land use areas: agricultural fields, water bodies and forests were recorded for four days along three 100m stretches in each type of area. One-hundred-and-forty-four individuals belonging to two orders, eight families, 11 genera and 13 species were recorded in the survey. Kills/km observed were: in forest 55, agricultural fields 38 and water bodies 27, for an overall average of 40 kills/km. Kill species compositions varied significantly between land use areas, but not overall kill rates.