227 resultados para Reactor RA-10
Resumo:
We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers (10(5) < Ra < 10(11)) and at three Prandtl numbers (Pr = 0.7, 5.2, 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (L(p)/A), made dimensionless by the near-wall length scale in turbulent convection (Z(w)), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to L(p)H/A for a given fluid layer of height H. The increase in Pr has a weak influence in decreasing L(p)/A. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
The kinetics of iron(II1) extraction by bis(Zethylhexy1) phosphate (HDEHP, HA) in kerosene from sulfuric acid solutions has been studied in a liquid-liquid laminar jet reactor. The contact time of the interface in this reacting device is of the same order of magnitude as the surface renewal time in dispersion mixing and much less than that obtained in the relatively quiescent condition of the Lewis cell. Yet the analysis of the data in this study suggested a rate-controlling step involving surface saturation quite in conformity with that obtained in the Lewis cell and not with that in dispersion mixing as reported in the literature. Further, the mechanism suggested a weaker dependence of the rate on hydrogen ion concentration which was reported by other workers.
Resumo:
The kinetics of oxidation of acetaldehyde to acetic acid was studied in a sparger reactor using manganese acetate as the catalyst. Data obtained in a stirred tank reactor are used for analyzing the sparger reactor data. The rate of chemical reaction is extremely fast and can be neglected for the rate equation of the sparger reactor. A kinetic model applicable at any temperature and concentration within the range of the variables studied is developed which predicts the performance of the sparger reactor satisfactorily.
Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor
Resumo:
This paper discusses a successful application of the Acoustic Emission Technique (AET) for the detection and location of leak paths present on an inaccessible side of an end shield of a Pressurised Heavy Water Reactor (PHWR). The methodology was based on the fact that air- and water-leak AE signals have different characteristic features. Baseline data was generated from a sound end shield of a PHWR for characterising the background noise. A mock-up end shield system with saw-cut leak paths was used to verify the validity of the methodology. It was found that air-leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of defective end shield were acquired and analysed. It was possible to detect and locate leak paths. The presence of detected leak paths was further confirmed by an alternative test.
Resumo:
This paper presents an optimization algorithm for an ammonia reactor based on a regression model relating the yield to several parameters, control inputs and disturbances. This model is derived from the data generated by hybrid simulation of the steady-state equations describing the reactor behaviour. The simplicity of the optimization program along with its ability to take into account constraints on flow variables make it best suited in supervisory control applications.
Resumo:
A general model of a foam bed reactor has been developed which rigorously accounts for the extent of gas absorption with chemical reaction occurring in both the storage and foam sections. Its applicability extends to a wide spectrum of reaction velocities. The possibilities of the predominance of the bulk-liquid reaction in the storage section or the absorption with reaction in the foam section can be handled as merely special cases of the general analysis. The importance of foam for carrying out a particular gas-liquid reaction is characterised by a criterion in terms of the fractional rate of reaction in the foam section. Trends of variations in the concentrations of dissolved free A, solute B, and gas-phase A with time of operation of the reactor are presented. The nature of the variation in the fractional rate of reaction in the foam section with time, at different reaction velocities, and the effect of the liquid flow rate (across the storage section) on the transience are also illustrated. Finally, the predictions of the general model have been validated using the available experimental data on the oxidation of sodium sulphide in a foam bed reactor. The agreement between the experimental and the present theoretical information is fairly good, apart from being more insightful than all the previous models of this reactor.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
Procedures were developed for purification and processing of electrodeposited enriched boron powder for control rod application in India's first commercial Proto Type Fast Breeder Reactor (PFBR). Methodology for removal of anionic (F-, Cl-, BF4-) and cationic (Fe2+, Fe3+, Ni2+) impurities was developed. Parameters for grinding boron flakes obtained after electrodeposition were optimized to obtain the boron powder having particle size less than 100 gm. The rate of removal of impurities was studied with respect to time and concentration of the reagents used for purification. Process parameters for grinding and removal of impurities were optimized. A flowsheet was proposed which helps in minimizing the purification time and concentration of the reagent used for the effective removal of impurities. The purification methodology developed in this work could produce boron that meets the technical specifications for control rod application in a fast reactor.
Resumo:
The synergistic effect of compressive growth stresses and reactor chemistry, silane presence, on dislocation bending at the very early stages of GaN growth has been studied using in-situ stress measurements and cross-sectional transmission electron microscopy. A single 100 nm Si-doped GaN layer is found to be more effective than a 1 mu m linearly graded AlGaN buffer layer in reducing dislocation density and preventing the subsequent layer from transitioning to a tensile stress. 1 mu m crack-free GaN layers with a dislocation density of 7 x 10(8)/cm(2), with 0.13 nm surface roughness and no enhancement in n-type background are demonstrated over 2 inch substrates using this simple transition scheme. (C) 2013 AIP Publishing LLC.
Resumo:
The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.