133 resultados para Rayleigh scattering
Resumo:
We demonstrate that the hyper-Rayleigh scattering technique can be employed to measure the partition coefficient (k(p)) of a solute in a mixture of two immiscible solvents. Specifically, partition coefficients of six substituted benzoic acids in water/toluene (1:1 v/v) and water/chloroform (1:1 v/v) systems have been measured. Our values compare well with the k(p) values measured earlier by other techniques, The advantages offered by this technique are also discussed.
Resumo:
We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, beta(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I-2 omega,I-X,I-X/I-2 omega,I-Z,I-X and D' = I-2 omega,I-X,I-C/I-2 omega,I-Z,I-C in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, beta(HRS), and the value of macroscopic depolarization ratios, D and D', are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical beta(HRS), D and D' values as a function of the geometry of the complex. The calculated beta(HRS), D, and D' values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30 degrees is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. (C) 2011 American Institute of Physics. doi:10.1063/1.3514922]
Resumo:
The critical micelle concentration (CMC) of several surfactants that contain an NLO chromophore, either at the hydrocarbon tail, or at the hydrophilic headgroup, or even as a counterion, was determined by hyper-Rayleigh scattering (HRS). In all cases, the HRS signal exhibited a similar variation with surfactant concentration, wherein the CMC is inferred from a rather unprecedented drop in the signal intensity. This drop is attributed to the formation of small pre-micellar aggregates, whose concentrations become negligible above CMC. In addition, a probe molecule, which upon protonation yielded a species with significantly enhanced HRS intensity, was developed and its utility for the determination of the CIVIC of simple fatty acids was demonstrated.
Resumo:
In this article, we report the structure of a 1:1 charge transfer complex between pyridine (PYR) and chloranil (CHL) in solution (CHCl(3)) from the measurement of hyperpolarizability (beta(HRS)) and linear and circular depolarization ratios, D and D', respectively, by the hyper-Rayleigh scattering technique and state-of-the-art quantum chemical calculations. Using linearly (electric field vector along X) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I(X,X)(2 omega)/I(X,Z)(2 omega) and D' = I(X,C)(2 omega)/I(Z,C)(2 omega) in the laboratory fixed XYZ frame by detecting the second harmonic (SH) scattered light in a polarization resolved fashion. The stabilization energy and the optical gap calculated through the MP2/cc-pVDZ method using Gaussian09 were not significantly different to distinguish between the cofacial and T-shape structures. Only when the experimentally obtained beta(HRS) and the depolarization ratios, D and D', were matched with the theoretically computed values from single and double configuration interaction (SDCI) calculations performed using the ZINDO-SCRF technique, we concluded that the room temperature equilibrium structure of the complex is cofacial. This is in sharp contrast to an earlier theoretical prediction of the T-shape structure of the complex.
Resumo:
Using an iterative sequence of Wittig olefination, reduction, oxidation, and condensation of an active methylene group to carbonyl, it was possible to prepare a series of organometallic push-pull molecules [(CO)(5)M=C(OCH3)(-CH=CH-)(n)(C5H4)Fe(C5H5), M = W, Cr, n = 1-4] in which ferrocene is the donor element and a Fisher carbene moeity is the acceptor group. The molecular first hyperpolarizability beta was determined by hyper-Rayleigh scattering experiments. The beta values ranged from 110 x 10(-30) to 2420 x 10(-30) esu in acetonitrile, and they are among the highest reported for organometallic molecules so far. Electrochemical measurements are consistent with the push-pull nature of these compounds.
Resumo:
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The previously reported beta values of BR and retinal based chromophores were very high but subsequent measurements found them to be much less. We have found that the beta values of these compounds do not vary so much with experimental conditions as with the method of analysis. Hyper-Rayleigh scattering measurements at 1543 and 1907 nm produce more realistic beta values close to the intrinsic (static) hyperpolarizability, beta(0) which for BR is still very high (275 x 10 (30) esu). The optical nonlinearity of BR arises entirely due to the protonated retinal Schiff Base (PRSB) which in its isolated form has the same intrinsic hyperpolarizability as that of the rotein.
Resumo:
We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.
Resumo:
Half sandwich complexes of the type [CpM(CO)(n)X] {X=Cl, Br, I; If, M=Fe, Ru; n=2 and if M=Mo; n=3} and [CpNiPPh3X] {X=Cl, Br, I} have been synthesized and their second order molecular nonlinearity (beta) measured at 1064 nm in CHCl3 by the hyper-Rayleigh scattering technique. Iron complexes consistently display larger beta values than ruthenium complexes while nickel complexes have marginally larger beta values than iron complexes. In the presence of an acceptor ligand such as CO or PPh3, the role of the halogen atom is that of a pi donor. The better overlap of Cl orbitals with Fe and Ni metal centres make Cl a better pi donor than Br or I in the respective complexes. Consequently, M-pi interaction is stronger in Fe/Ni-Cl complexes. The value of beta decreases as one goes down the halogen group. For the complexes of 4d metal ions where the metal-ligand distance is larger, the influence of pi orbital overlap appears to be less important, resulting in moderate changes in beta as a function of halogen substitution. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thermal conductivities of glasses at low temperatures show strikingly similar behavior irrespective of their chemical composition. While for T<1 K the thermal conductivity can be understood in the phenomenological tunneling model; the ‘‘universal plateau’’ in the temperature interval 15>T>2 K is totally unexplained. While Rayleigh scattering of phonons by structural disorder should be the natural cause for limiting the mean free path of phonons in this temperature range, it has been concluded before that in glasses a strong enough source of such scattering does not exist. In this study we show by a proper structural analysis in at least one material (namely, silica) that a strong enough source of Rayleigh scattering of phonons in glasses does exist so that the ‘‘universal plateau’’ can be explained without invoking any new mechanism. This may be for the first time that the low-temperature property of a structural glass has been correlated to its structure.
Resumo:
Second-order nonlinearities (beta) of five weak organic acids in protic solvents have been measured by the double-quantum Rayleigh scattering (DRS) technique. beta is found to bear a linear relationship to the pK(a) of these compounds in those solvents. A direct implication of this observation is that the DRS technique can be used to determine the pK(a) of weak organic acids in any solvent.
Resumo:
In this paper we report the first hyperpolarizabilities (beta) of 12, sulfophthalein dyes. Since these dyes are ionic in nature, their second-order nonlinearities were measured by the hyper-Rayleigh scattering technique in solution. The measured beta values are large and highly solvent dependent. Inclusion of solvent polarity in ab initio estimates of static second-order polarizability does not fully account for the experimental beta values. Contributions from the dissociated forms of the dye in different solvents seem to play an important role in enhancing beta in these systems.
Resumo:
The first hyperpolarizabilities (beta) of some weak aromatic organic acids have been measured in protic solvents by the hyper-Rayleigh scattering (HRS) technique at low concentrations. The measured hyperpolarizability (beta(m)) varies between the two extreme limits: the hyperpolarizability of the acid form (beta(HA)) at the lower side and that of the basic form (beta(A-)) at the higher side. The degree of dissociation (alpha) of the acid in a solvent is related to the measured hyperpolarizability, beta(m), by the following relationship: beta(m)(2)=(1-alpha)beta(HA)(2)+alpha beta(A-)(2). The calculated beta's including solvent effects in terms of an Onsager field do not reproduce the experimentally measured hyperpolarizabilities. Other solvent-induced effects like hydrogen bonding and van der Waals interactions seem to influence the first hyperpolarizability and, thus, indirectly the extent of dissociation of these weak acids in these protic solvents.
Resumo:
Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.
Resumo:
A series of aryl monosulphides and disulphides have been synthesized and characterized. Their molecular hyperpolarizability (beta) has been measured in solution with the hyper-Rayleigh Scattering technique and also calculated by semiempirical AMI method. The trend in the observed and calculated values of first hyperpolarizability of these compounds has been found to be in good agreement. These compounds show moderate P values and excellent transparency in the visible region.