93 resultados para Probability density function
Resumo:
A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.
Resumo:
The statistically steady humidity distribution resulting from an interaction of advection, modelled as an uncorrelated random walk of moist parcels on an isentropic surface, and a vapour sink, modelled as immediate condensation whenever the specific humidity exceeds a specified saturation humidity, is explored with theory and simulation. A source supplies moisture at the deep-tropical southern boundary of the domain and the saturation humidity is specified as a monotonically decreasing function of distance from the boundary. The boundary source balances the interior condensation sink, so that a stationary spatially inhomogeneous humidity distribution emerges. An exact solution of the Fokker-Planck equation delivers a simple expression for the resulting probability density function (PDF) of the wate-rvapour field and also the relative humidity. This solution agrees completely with a numerical simulation of the process, and the humidity PDF exhibits several features of interest, such as bimodality close to the source and unimodality further from the source. The PDFs of specific and relative humidity are broad and non-Gaussian. The domain-averaged relative humidity PDF is bimodal with distinct moist and dry peaks, a feature which we show agrees with middleworld isentropic PDFs derived from the ERA interim dataset. Copyright (C) 2011 Royal Meteorological Society
Resumo:
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.
Resumo:
Recent focus of flood frequency analysis (FFA) studies has been on development of methods to model joint distributions of variables such as peak flow, volume, and duration that characterize a flood event, as comprehensive knowledge of flood event is often necessary in hydrological applications. Diffusion process based adaptive kernel (D-kernel) is suggested in this paper for this purpose. It is data driven, flexible and unlike most kernel density estimators, always yields a bona fide probability density function. It overcomes shortcomings associated with the use of conventional kernel density estimators in FFA, such as boundary leakage problem and normal reference rule. The potential of the D-kernel is demonstrated by application to synthetic samples of various sizes drawn from known unimodal and bimodal populations, and five typical peak flow records from different parts of the world. It is shown to be effective when compared to conventional Gaussian kernel and the best of seven commonly used copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and Student's T) in estimating joint distribution of peak flow characteristics and extrapolating beyond historical maxima. Selection of optimum number of bins is found to be critical in modeling with D-kernel.
Resumo:
The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Based on the conclusions drawn in the bijective transformation between possibility and probability, a method is proposed to estimate the fuzzy membership function for pattern recognition purposes. A rational function approximation to the probability density function is obtained from the histogram of a finite (and sometimes very small) number of samples. This function is normalized such that the highest ordinate is one. The parameters representing the rational function are used for classifying the pattern samples based on a max-min decision rule. The method is illustrated with examples.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
The response of the Van der Pol oscillator to stationary narrowband Gaussian excitation is considered. The central frequency of excitation is taken to be in the neighborhood of the system limit cycle frequency. The solution is obtained using a non-Gaussian closure approximation on the probability density function of the response. The validity of the solution is examined with the help of a stochastic stability analysis. Solution based on Stratonovich''s quasistatic averaging technique is also obtained. The comparison of the theoretical solutions with the digital simulations shows that the theoretical estimates are reasonably good.
Resumo:
The response of a rigid rectangular block resting on a rigid foundation and acted upon simultaneously by a horizontal and a vertical random white-noise excitation is considered. In the equation of motion, the energy dissipation is modeled through a viscous damping term. Under the assumption that the body does not topple, the steady-state joint probability density function of the rotation and the rotational velocity is obtained using the Fokker-Planck equation approach. Closed form solution is obtained for a specific combination of system parameters. A more general but approximate solution to the joint probability density function based on the method of equivalent non-linearization is also presented. Further, the problem of overturning of the block is approached in the framework of the diffusion methods for first passage failure studies. The overturning of the block is deemed incipient when the response trajectories in the phase plane cross the separatrix of the conservative unforced system. Expressions for the moments of first passage time are obtained via a series solution to the governing generalized Pontriagin-Vitt equations. Numerical results illustra- tive of the theoretical solutions are presented and their validity is examined through limited amount of digital simulations.
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator.The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.