79 resultados para Prediction of scholastic success.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present, paper deals with the CAE-based study Of impact of jacketed projectiles on single- and multi-layered metal armour plates using LS-DYNA. The validation of finite element modelling procedure is mainly based on the mesh convergence study using both shell and solid elements for representing single-layered mild steel target plates. It, is shown that the proper choice of mesh density and the strain rate-dependent material properties are essential for all accurate prediction of projectile residual velocity. The modelling requirements are initially arrived at by correlating against test residual velocities for single-layered mild steel plates of different depths at impact velocities in the ran.-c of approximately 800-870 m/s. The efficacy of correlation is adjudged, in terms of a 'correlation index', defined in the paper: for which values close to unity are desirable. The experience gained for single-layered plates is next; used in simulating projectile impacts on multi-layered mild steel target plates and once again a high degree of correlation with experimental residual velocities is observed. The study is repeated for single- and multi-layered aluminium target plates with a similar level of success in test residual velocity prediction. TO the authors' best knowledge, the present comprehensive study shows in particular for the first time that, with a. proper modelling approach, LS-DYNA can be used with a great degree of confidence in designing perforation-resistant single and multi-layered metallic armour plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulation of separated flows in rocket nozzles is challenging because existing turbulence models are unable to predict it correctly. This paper addresses this issue with the Spalart-Allmaras and Shear Stress Transport (SST) eddy-viscosity models, which predict flow separation with moderate success. Their performances have been compared against experimental data for a conical and two contoured subscale nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the nozzle pressure ratio (NPR) and nozzle type. A careful assessment indicated how the model had to be tuned for better, consistent prediction. It is learnt that SST model's failure is caused by limiting of the shear stress inside boundary layer according to Bradshaw's assumption, and by over prediction of jet spreading rate. Accordingly, SST's coefficients were empirically modified to match the experimental wall pressure data. Results confirm that accurate RANS prediction of separation depends on the correct capture of the jet spreading rate, and that it is feasible over a wide range of NPRs by modified values of the diffusion coefficients in the turbulence model. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. Results: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. Conclusion: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overconsolidated soils exhibit a bilinear e-log p relationship. During virgin compression, microstructural units form larger stable groups, thereby reducing the operating specific surface and, in turn, net osmotic repulsive forces in the soil. The rebound portion of the e-log p curve is consequently flatter. The generalized relationship for compressibility of uncemented soils in the overconsolidated state has been developed in the form of e/eL = 1.122 = 0.188 log pc - 0.0463 log p in which e/eL is the generalized soil state parameter, pc is the preconsolidation pressure in kPa, p is the effective overburden pressure in kPa, e is the in situ void ratio, and eL is the void ratio corresponding to the liquid limit water content (wLG). This relationship can be usefully employed to predict both the preconsolidation pressure and compressibility responses of overconsolidated uncemented soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple equation to predict the breakdown voltages for binary mixtures (Vmix) of electronegative gases (SF6, CCl2F2) and buffer gases (N2, N2O, CO2, air) under uniform electric field has been proposed. Values of Vmix evaluated using this equation for mixtures of SF6-N2, SF6-air, SF6-N2O, SF6-CO2 and CCl2F2-N2 over a wide range of pd show an excellent agreement with the experimentally measured data available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model has been developed to predict heat transfer rates and sizes of bubbles generated during nucleate pool boiling. This model assumes conduction and a natural convective heat transfer mechanism through the liquid layer under the bubble and transient conduction from the bulk liquid. The temperature of the bulk liquid in the vicinity of the bubble is obtained by assuming a turbulent natural convection process from the hot plate to the liquid bulk. The shape of the bubble is obtained by equilibrium analysis. The bubble departure condition is predicted by a force balance equation. Good agreement has been found between the bubble radii predicted by the present theory and the ones obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note presents the statistical analysis carried out on some of the available experimental results to predict the resonant frequency and maximum displacement amplitude of a machine foundation – soil system under vertical vibration as a function of the size and weight of the foundation and of the excitation level. A total of 442 experimental results of Fry, Novak, and Raman have been analysed using nonlinear regression analysis. The results obtained compared well with predictions obtained from the popular theoretical models, and the coefficient of correlation obtained from the analysis was satisfactory in most of the cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When immobilized enzyme kinetics are disguised by inter- and intraparticle diffusion effects, an approximate mathematical procedure is indicated whereby experimental data obtained in the limiting ranges of first- and zeroth-order Michaelis-Menten kinetics could be used for the prediction of the kinetic constants.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lack of information on protein-protein interactions at the host-pathogen interface is impeding the understanding of the pathogenesis process. A recently developed, homology search-based method to predict protein-protein interactions is applied to the gastric pathogen, Helicobacter pylori to predict the interactions between proteins of H. pylori and human proteins in vitro. Many of the predicted interactions could potentially occur between the pathogen and its human host during pathogenesis as we focused mainly on the H. pylori proteins that have a transmembrane region or are encoded in the pathogenic island and those which are known to be secreted into the human host. By applying the homology search approach to protein-protein interaction databases DIP and iPfam, we could predict in vitro interactions for a total of 623 H. pylori proteins with 6559 human proteins. The predicted interactions include 549 hypothetical proteins of as yet unknown function encoded in the H. pylori genome and 13 experimentally verified secreted proteins. We have recognized 833 interactions involving the extracellular domains of transmembrane proteins of H. pylori. Structural analysis of some of the examples reveals that the interaction predicted by us is consistent with the structural compatibility of binding partners. Examples of interactions with discernible biological relevance are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.