457 resultados para Poverty Dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the phenomenon of self-organized criticality (SOC) in a simple random walk model described by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have obtained power laws in the time intervals between consecutive events of "digging." Being a simple random walk, the power laws in space translate to power laws in time. We also study the finite size scaling of asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively from the cascade models of SOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here on a series of laboratory experiments on plumes, undertaken with the object of simulating the effect of the heat release that occurs in clouds on condensation of water vapor. The experimental technique used for this purpose relies on ohmic heating generated in an electrically conducting plume fluid subjected to a suitable alternating voltage across specified axial stations in the plume flow [Bhat et al., 1989]. The present series of experiments achieves a value of the Richardson number that is toward the lower end of the range that characteristics cumulus clouds. It is found that the buoyancy enhancement due to heating disrupts the eddy structures in the flow and reduces the dilution owing to entrainment of ambient fluid that would otherwise have occurred in the central region of the plume. Heating also reduces the spread rate of the plume, but as it accelerates the flow as well, the overall specific mass flux in the plume does not show a very significant change at the heat input employed in the experiment. However, there is some indication that the entrainment rate (proportional to the streamwise derivative of the mass flux) is slightly higher immediately after heat injection and slightly lower farther downstream. The measurements support a previous proposal for a cloud scenario [Bhat and Narasimha, 1996] and demonstrate how fresh insights into certain aspects of the fluid dynamics of clouds may be derived from the experimental techniques employed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design rapidly folding sequences by assigning the strongest couplings to the contacts present in a target native state in a two dimensional model of heteropolymers. The pathways to folding and their dependence on the temperature are illustrated via a mapping of the dynamics into motion within the space of the maximally compact cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of correlations on the viscosity of a dilute sheared inelastic fluid is analyzed using the ring-kinetic equation for the two-particle correlation function. The leading-order contribution to the stress in an expansion in epsilon=(1-e)(1/2) is calculated, and it is shown that the leading-order viscosity is identical to that obtained from the Green-Kubo formula, provided the stress autocorrelation function in a sheared steady state is used in the Green-Kubo formula. A systemmatic extension of this to higher orders is also formulated, and the higher-order contributions to the stress from the ring-kinetic equation are determined in terms of the terms in the Chapman-Enskog solution for the Boltzmann equation. The series is resummed analytically to obtain a renormalized stress equation. The most dominant contributions to the two-particle correlation function are products of the eigenvectors of the conserved hydrodynamic modes of the two correlated particles. In Part I, it was shown that the long-time tails of the velocity autocorrelation function are not present in a sheared fluid. Using those results, we show that correlations do not cause a divergence in the transport coefficients; the viscosity is not divergent in two dimensions, and the Burnett coefficients are not divergent in three dimensions. The equations for three-particle and higher correlations are analyzed diagrammatically. It is found that the contributions due to the three-particle and higher correlation functions to the renormalized viscosity are smaller than those due to the two-particle distribution function in the limit epsilon -> 0. This implies that the most dominant correlation effects are due to the two-particle correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential to create a new type of hybrid material with unique thermal, optical, or electrical properties. Understanding their structure, phase behavior, and dynamics is crucial for realizing such potentials. In this work we provide an experimental insight into the dynamics of such composites in terms of the temperature, wave vector, and volume fraction of nanoparticles, using multispeckle synchrotron x-ray photon correlation spectroscopy measurements on gold nanoparticles embedded in polymethylmethacrylate. Detailed analysis of the intermediate scattering functions reveals possible existence of an intrinsic length scale for dynamic heterogeneity in polymer nanocomposites similar to that seen in other soft materials like colloidal gels and glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite-state wake model is used to investigate aeromechanical stability of hingeless-rotor helicopters in the ground-contact, hover and trimmed-night conditions. The investigation covers three items: (1) the convergence of the damping with increasing number of wake harmonics for the lag regressing, and body pitch and roll modes; (2) a parametric study of the damping over a range of thrust level, advance ratio and number of blades; and (3) correlations, primarily with the damping and frequency measurements of these lag and body modes. The convergence and parametric studies are conducted in the hover and trimmed-flight conditions; they include predictions from the widely used dynamic inflow model. The correlations are conducted in the ground-contact conditions and include predictions from the dynamic inflow and vortex models; recently, this vortex model is proposed for the axial-flight conditions and is used to investigate the coupled free vibrations of rotor flapping and body modes. The convergence and parametric studies show that a finite-state wake model that goes well beyond the dynamic inflow model is required for fairly converged damping, Moreover, the correlations from the finite-state wake, dynamic inflow and vortex models are generally satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the solvation dynamics of a charged coumarin dye molecule in gamma-cyclodextrin/water has been carried out by using two different theoretical approaches. The first approach is based on a multishell continuum model (MSCM). This model predicts the time scales of the dynamics rather well, provided an accurate description of the frequency-dependent dielectric function is supplied. The reason for this rather surprising agreement is 2-fold. First, there is a cancellation of errors, second, the two-zone model mimics the heterogeneous microenvironment surrounding the ion rather well. The second approach is based on the molecular hydrodynamics theory (MI-IT). In this molecular approach, the solvation dynamics has been studied by restricting the translational motion of the solvent molecules enclosed within the cavity. The results from the molecular theory are also in good agreement with the experimental results. Our study indicates that, in the present case, the restricted environment affects only the long time decay of the solvation time correlation function. The short time dynamics is still governed by the librational (and/or vibrational) modes present in bulk water.