218 resultados para Positive Matrix Factorization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering techniques which can handle incomplete data have become increasingly important due to varied applications in marketing research, medical diagnosis and survey data analysis. Existing techniques cope up with missing values either by using data modification/imputation or by partial distance computation, often unreliable depending on the number of features available. In this paper, we propose a novel approach for clustering data with missing values, which performs the task by Symmetric Non-Negative Matrix Factorization (SNMF) of a complete pair-wise similarity matrix, computed from the given incomplete data. To accomplish this, we define a novel similarity measure based on Average Overlap similarity metric which can effectively handle missing values without modification of data. Further, the similarity measure is more reliable than partial distances and inherently possesses the properties required to perform SNMF. The experimental evaluation on real world datasets demonstrates that the proposed approach is efficient, scalable and shows significantly better performance compared to the existing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Feature track matrix factorization based methods have been attractive solutions to the Structure-front-motion (Sfnl) problem. Group motion of the feature points is analyzed to get the 3D information. It is well known that the factorization formulations give rise to rank deficient system of equations. Even when enough constraints exist, the extracted models are sparse due the unavailability of pixel level tracks. Pixel level tracking of 3D surfaces is a difficult problem, particularly when the surface has very little texture as in a human face. Only sparsely located feature points can be tracked and tracking error arc inevitable along rotating lose texture surfaces. However, the 3D models of an object class lie in a subspace of the set of all possible 3D models. We propose a novel solution to the Structure-from-motion problem which utilizes the high-resolution 3D obtained from range scanner to compute a basis for this desired subspace. Adding subspace constraints during factorization also facilitates removal of tracking noise which causes distortions outside the subspace. We demonstrate the effectiveness of our formulation by extracting dense 3D structure of a human face and comparing it with a well known Structure-front-motion algorithm due to Brand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is important to identify the ``correct'' number of topics in mechanisms like Latent Dirichlet Allocation(LDA) as they determine the quality of features that are presented as features for classifiers like SVM. In this work we propose a measure to identify the correct number of topics and offer empirical evidence in its favor in terms of classification accuracy and the number of topics that are naturally present in the corpus. We show the merit of the measure by applying it on real-world as well as synthetic data sets(both text and images). In proposing this measure, we view LDA as a matrix factorization mechanism, wherein a given corpus C is split into two matrix factors M-1 and M-2 as given by C-d*w = M1(d*t) x Q(t*w).Where d is the number of documents present in the corpus anti w is the size of the vocabulary. The quality of the split depends on ``t'', the right number of topics chosen. The measure is computed in terms of symmetric KL-Divergence of salient distributions that are derived from these matrix factors. We observe that the divergence values are higher for non-optimal number of topics - this is shown by a `dip' at the right value for `t'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer Vision has seen a resurgence in the parts-based representation for objects over the past few years. The parts are usually annotated beforehand for training. We present an annotation free parts-based representation for the pedestrian using Non-Negative Matrix Factorization (NMF). We show that NMF is able to capture the wide range of pose and clothing of the pedestrians. We use a modified form of NMF i.e. NMF with sparsity constraints on the factored matrices. We also make use of Riemannian distance metric for similarity measurements in NMF space as the basis vectors generated by NMF aren't orthogonal. We show that for 1% drop in accuracy as compared to the Histogram of Oriented Gradients (HOG) representation we can achieve robustness to partial occlusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-negative matrix factorization [5](NMF) is a well known tool for unsupervised machine learning. It can be viewed as a generalization of the K-means clustering, Expectation Maximization based clustering and aspect modeling by Probabilistic Latent Semantic Analysis (PLSA). Specifically PLSA is related to NMF with KL-divergence objective function. Further it is shown that K-means clustering is a special case of NMF with matrix L2 norm based error function. In this paper our objective is to analyze the relation between K-means clustering and PLSA by examining the KL-divergence function and matrix L2 norm based error function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ASTM D2303 standard provides a method for evaluating the tracking and erosion resistance of polymeric insulators under ac voltages. In this paper, the above method has been extended for evaluating the performance of the insulators under dc stresses. Tests were conducted on polymeric silicone rubber (SR) insulators under positive and negative dc stresses. Micron sized Alumina trihydrate (uATH) and nano sized Alumina (nALU) were used as fillers in SR matrix to improve the resistance to tracking and erosion. Results suggest that SR composites perform better under negative dc than under positive dc voltages. Eroded mass and leakage current data support the above result. Samples with low concentration of nano alumina fillers performed on par with the samples with large loadings of uATH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geometric and non parametric procedure for testing if two finite set of points are linearly separable is proposed. The Linear Separability Test is equivalent to a test that determines if a strictly positive point h > 0 exists in the range of a matrix A (related to the points in the two finite sets). The algorithm proposed in the paper iteratively checks if a strictly positive point exists in a subspace by projecting a strictly positive vector with equal co-ordinates (p), on the subspace. At the end of each iteration, the subspace is reduced to a lower dimensional subspace. The test is completed within r ≤ min(n, d + 1) steps, for both linearly separable and non separable problems (r is the rank of A, n is the number of points and d is the dimension of the space containing the points). The worst case time complexity of the algorithm is O(nr3) and space complexity of the algorithm is O(nd). A small review of some of the prominent algorithms and their time complexities is included. The worst case computational complexity of our algorithm is lower than the worst case computational complexity of Simplex, Perceptron, Support Vector Machine and Convex Hull Algorithms, if d

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.