94 resultados para Poly(methyl methacrylate) matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental results pertaining to the initiation, dynamics and mechanism of cavitation erosion on poly(methyl methacrylate) specimens tested in a rotating disk device are described in detail. Erosion normally starts at the location nearest to the center of rotation (CR). As the exposure time to cavitation increases, additional erosion areas or sites appear away from the CR and secondary erosion (induced by eroded pits) spreads upstream and merges with the main pit. The microcracks increase in density towards the end of the incubation period and transform into macrocracks in most cases. A study of light optical photographs and scanning electron micrographs of the eroded area shows that material particles are removed from the network of cracks because of crack joining and pits indicate particle debris. Optical degradation (loss of transmittance) is observed to be greater on the back of the specimen than on the front.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate)(PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below T-g of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K.complex spectra were obtained with the slow component mostly arisingout of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into thehighly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentionedsemi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in a-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the T-g regions were also calculated. T-50G was found to correlate with the T-g of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm(3).C-13 T-1 rho measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer sized morphology in the case of highly crosslinked semi IPN. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and stability of the induced dipolar orientation of 2-methyl-4-nitroaniline (MNA)/poly(methyl methacrylate) (PMMA) guest/host system is investigated. The chromophores are aligned using both the corona discharge and contact electrode poling techniques. The magnitude of order parameter (also an indicator for the second order nonlinear susceptibility) is measured by recording absorbances of the poled (by the two different techniques) and unpoled PMMA films at different concentrations of MNA. Under the same conditions the corona poling technique creates a higher alignment of molecules along the field direction. The time dependence of the second harmonic intensity of the MNA/PMMA film prepared by the two techniques can be described by a Kohlrausch-Williams-Watts stretched exponential. The temperature dependence of the decay time constant is found to generally follow a modified Williams-Landel-Ferry (WLF) or Vogel-Tamann-Fulcher (VTF) equation. The glass transition temperature seems to be the single most important parameter for determining the relaxation time tau(T).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic degradation of poly(methyl methacrylate) (PMMA) was carried out in several solvents and some mixtures of solvents. The time evolution of molecular weight distribution (MWD), determined by gel permeation chromatography, is analysed by continuous distribution kinetics. The rate coefficients for polymer degradation are determined for each solvent. The variation of rate coefficients is correlated with the vapour pressure of the solvent, kinematic viscosity of the solution and solvent-polymer interaction parameters. The vapour pressure and the kinematic viscosity of the solution are found to be more critical than other parameters (such as the Huggins and Flory-Huggins constants) in determining the degradation rates. (C) 2001 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the electrical anisotropic transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. The anisotropy in the resistivity increases with decreasing temperature and the conduction mechanism in the parallel and perpendicular direction is different. Magnetoresistance (MR) studies also suggest anisotropic behavior of the infiltrated mats. Though MR is negative, an upturn is observed when the magnetic field is increased. This is due to the interplay of electron weak localization and electron-electron interactions mechanisms. Overall, infiltrated carbon nanotube mat is a good candidate for anisotropically conductive polymer composite and a simple fabrication method has been reported. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675873]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites comprising Poly(Methyl Methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) via melt mixing followed by hot pressing were fabricated. These were characterized using X-ray diffraction, thermo gravimetric, scanning electron microscopy, and Impedance analyzer for their structural, morphology, and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. The composite, with 38 Vol % of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low frequency relaxation is attributed to the space charge polarization/MWS effect. Theoretical models were employed to rationalize the dielectric behavior of these composites. At higher temperatures, the relaxation peak shifts to higher frequencies, due to the merging of both beta and alpha relaxations into a single dielectric dispersion peak. The AC conductivity in the high frequency region was attributed to the electronic polarization. POLYM. ENG. SCI., 54:551-558, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation hromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission.Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrinsic viscosity data for polystyrene, poly(methyl methacrylate) and styrene-methyl methacrylate copolymer of azeotropic composition have been used to evaluate the excess interaction parameters at different temperatures in γ-butyrolactone and dimethylformamide. It is found that these values are positive and show a negligible increase with increase in temperature, indicating therefore that the hetero-contact interactions are not influenced by temperature, contrary to the results obtained by Dondos and Benoit for the same copolymer system in p-xylene and iso-amyl acetate.