40 resultados para Pocket gophers
Resumo:
Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.
Resumo:
Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal ``glutaminase'' (GAT) and C-terminal ``synthetase'' domain. The enzyme is identified as a potential target for anticancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.
Resumo:
A rough hydrophobic surface when immersed in water can result in a ``Cassie'' state of wetting in which the water is in contact with both the solid surface and the entrapped air. The sustainability of the entrapped air on such surfaces is important for underwater applications such as reduction of flow resistance in microchannels and drag reduction of submerged bodies such as hydrofoils. We utilize an optical technique based oil total internal reflection of light at the water-air interface to quantify the spatial distribution of trapped air oil such a surface and its variation with immersion time. With this technique, we evaluate the sustainability of the Cassie state on hydrophobic surfaces with four different kinds of textures. The textures studied are regular arrays of pillars, ridges, and holes that were created in silicon by a wet etching technique, and also a texture of random craters that was obtained through electrodischarge machining of aluminum. These surfaces were rendered hydrophobic with a self-assembled layer Of fluorooctyl trichlorosilane. Depending on the texture, the size and shape of the trapped air pockets were found to vary. However, irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear, suggesting that the sustainability of the ``Cassie'' state is finite for all the microstructures Studied. This is possibly due to diffusion of air from the trapped air pockets into the water. The time scale for disappearance of air pockets was found to depend on the kind of microstructure and the hydrostatic pressure at the water-air interface. For the surface with a regular array of pillars, the air pockets were found to be in the form of a thin layer perched on top of the pillars with a large lateral extent compared to the spacing between pillars. For other surfaces studied, the air pockets are smaller and are of the same order as the characteristic length scale of the texture. Measurements for the surface with holes indicate that the time for air-pocket disappearance reduces as the hydrostatic pressure is increased.
Resumo:
Mycobacterium smegmatis topoisomerase I (Mstopol) is distinct from typical type IA topoisomerases. The enzyme binds to both single- and double-stranded DNA with high affinity, making specific contacts. The enzyme comprises conserved regions similar to type IA topoisomerases from Escherichia coli and other eubacteria but lacks the typically found zinc fingers in the carboxy-terminal domain. The enzyme can perform DNA cleavage m the absence of Mg2+ but religation needs exogenously added Mg2+. One molecule of Mg2+ tightly bound to the enzyme has no role in DNA cleavage but is needed only for the religation reaction. The toprim. (topoisomerase-primase) domain in MstopoI comprising the Mg2+ binding pocket, conserved in both type IA and type II topoisomerases, was subjected to mutagenesis to understand the role of Mg2+, in different steps of the reaction. The residues D108, D110, and E112 of the enzyme, which form the acidic triad in the DXDXE motif, were changed to alanines. D108A mutation resulted in an enzyme that is Mg2+ dependent for DNA cleavage unlike Mstopol and exhibited enhanced DNA cleavage property and reduced religation activity. The mutant was toxic for cell growth, most likely due to the imbalance in cleavage-religation equilibrium. In contrast, the E112A mutant behaved like wild-type enzyme, cleaving DNA in a Mg2+-independent fashion, albeit to a reduced extent. Intra- and intermolecular religation assays indicated specific roles for D108 and E112 residues during the reaction. Together, these results indicate that the D108 residue has a major role during cleavage and religation, while E112 is important for enhancing the efficiency of cleavage. Thus, although architecturally and mechanistically similar to topoisomerase I from E. coli, the metal coordination pattern of the mycobacterial enzyme is distinct, opening up avenues to exploit the enzyme to develop inhibitors.
Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity
Resumo:
Sirtuins are NAD(+) dependent deacetylases that modulate various essential cellular functions. Development of peptide based inhibitors of Sir2s would prove useful both as pharmaceutical agents and as effectors by which downstream cellular alterations can be monitored. Click chemistry that utilizes Huisgen's 1,3-dipolar cycloaddition permits attachment of novel modifications onto the side chain of lysine. Herein, we report the synthesis of peptide analogues prepared using click reactions on N epsilon-propargyloxycarbonyl protected lysine residues and their characterization as inhibitors of Plasmodium falciparum Sir2 activity. The peptide based inhibitors exhibited parabolic competitive inhibition with respect to acetylated-peptide substrate and parabolic non-competitive inhibition with NAD(+) supporting the formation of EI2 and E.NAD(+).I-2 complexes. Cross-competition inhibition analysis with the non-competitive inhibitor nicotinamide (NAM) ruled out the possibility of the NAM-binding site being the second inhibitor binding site, suggesting the presence of a unique alternate pocket commodating the inhibitor. One of these compounds was also found to be a potent inhibitor of the intraerythrocytic growth of P. falciparum with 50% inhibitory concentration in the micromolar range.
Resumo:
Background: The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved beta-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as ``hypothetical''. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function. Methodology/Principal Findings: A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer. Conclusions/Significance: Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.
Resumo:
The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 Å, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34–37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in 2H, 13C, and 15N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435–37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.
Resumo:
Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.
Resumo:
Coccinia indica agglutinin (CIA) is a chitooligosaccharide-specific lectin with two binding sites/homodimer of M(r) 32,000. Quenching studies implied tryptophan involvement in binding activity, which was confirmed by chemical modification experiments (A. R. Sanadi and A. Surolia, submitted for publication). Binding of 4-methylumbelliferyl chitooligosaccharides has been carried out to study their binding by CIA. Reversal experiments confirm the validity of the data previously obtained (A. R. Sanadi and A. Surolia, submitted for publication) from intrinsic fluorescence studies. Surprisingly, unlike wheat germ agglutinin, there is no consistent thermodynamic effect of the chromophoric label on binding activities as compared with the native sugars. From the changes in the optical properties of the chromophoric group upon binding to CIA, it has been possible to confirm that the tryptophan located in the binding site is closest to the fourth subsite. Thermodynamic analysis shows that the binding of the labeled tetrasaccharide is very strongly entropically driven, with the terminal, nonreducing sugar residue protruding from the binding pocket. The results of stopped-flow kinetic studies on the binding of the chromophoric trisaccharide by CIA show that the mechanism of binding is a one-step process.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structuralvariations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structural variations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.
Resumo:
Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 X 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal.mol(-1), -21 cal.mol(-1)K(-1) and -6.86 kcal.mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and Forster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.
Resumo:
Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.
Resumo:
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.