23 resultados para Paleoseismic events
Resumo:
GERMINATION transfers a metabolically inert embryo into an active state of growth and development. The presence of conserved mRNAs has been demonstrated in different species of eggs and seeds1–4. In rice embryos, germination was shown to be independent of the synthesis of RNA up to 18–24 h after the start of imbibition5, although RNA synthesis was detected as early as 9 h after the start of imbibition. In this report, the sequence of the transcriptional events taking place during the early phase of the germination of rice embryos are presented.
Resumo:
he need for endogenous FSH in the periovulatory events such as oocyte maturation, ovulation, luteinization, maintenance of luteal function and follicular maturation was examined in the cyclic hamster. A specific antiserum to ovine FSH, shown to be free of antibodies to LH and to cross-react with FSH of the hamster, was used to neutralize endogenous FSH at various times. Administration of this antiserum during pro-oestrus did not affect oocyte maturation and ovulation, as judged by the normality of the ova to undergo fertilization and normal implantation. It also had no effect on the process of luteinization or on the maintenance of luteal function, as indicated by the normal levels of plasma and luteal progesterone during pro-oestrus and oestrus during the cycle and in pregnancy. All these processes were, however, disrupted by administration of an antiserum to ovine LH, thereby demonstrating their dependence on endogenous LH. Although FSH antiserum given at pro-oestrus did not prevent the imminent ovulation, it blocked the ovulation occurring at oestrus of the next cycle. This antiserum was effective in preventing the ensuing ovulation when given at any other time of the cycle until the morning of pro-oestrus. It is concluded that, in the hamster, high levels of FSH during pro-oestrus and oestrus are required for initiating maturation of a new set of follicles which are dependent on the trophic support of FSH throughout the cycle until the morning of pro-oestrus. Such follicles then appear to need only LH for subsequent ovulatory and associated processes.
Resumo:
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.
Resumo:
According to a press release dated 9 March 2009, the two experiments CDF (Collider Detector at Fermilab) and DZero have announced the discovery of ‘single top quark’ events, which represent a spectacular discovery and confirmation of the standard model of elementary particle physics. The results of their findings are now available as preprints which have been submitted for publication in Physical Review Letters1,2.
Resumo:
We investigate the events near the fusion interfaces of dissimilar welds using a phase-field model developed for single-phase solidification of binary alloys. The parameters used here correspond to the dissimilar welding of a Ni/Cu couple. The events at the Ni and the Cu interface are very different, which illustrate the importance of the phase diagram through the slope of the liquidus curves. In the Ni side, where the liquidus temperature decreases with increasing alloying, solutal melting of the base metal takes place; the resolidification, with continuously increasing solid composition, is very sluggish until the interface encounters a homogeneous melt composition. The growth difficulty of the base metal increases with increasing initial melt composition, which is equivalent to a steeper slope of the liquidus curve. In the Cu side, the initial conditions result in a deeply undercooled melt and contributions from both constrained and unconstrained modes of growth are observed. The simulations bring out the possibility of nucleation of a concentrated solid phase from the melt, and a secondary melting of the substrate due to the associated recalescence event. The results for the Ni and Cu interfaces can be used to understand more complex dissimilar weld interfaces involving multiphase solidification.
Resumo:
DNA protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter RNAP interactions during transcription initiation in the sigma(A)-dependent promoters P-rrnAPCL1, P-rrnB and P-gyr of Mycobacterium smegmatis. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.
Resumo:
Indole butyric acid (IBA) initiates roots in the hypocotyl tissue of Phaseolus vulgaris (French bean). The response is dependent on the concentration of IBA and the duration of exposure to the hormone. IBA enhances the rate of total protein synthesis in ca 30 min after exposure of the hypocotyl segments to the hormone. There is no detectable change in total or poly(A)-containing RNA synthesis in this period although significant increases are seen 2 hr after hormone pre-treatment. The early IBA-mediated increase in protein synthesis (30 min) is not sensitive to Actinomycin D but the antibiotic blocks the increase manifested 2 hr after hormone pre-treatment. Inhibition of early protein synthesis by cycloheximide depresses and delays root initiation. Cytosol prepared from IBA-treated hypocotyl tissue stimulates protein synthesis in vitro to a greater extent than that of the control.
Resumo:
Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.
Resumo:
The evolution of the dipole mode (DM) events in the Indian Ocean is examined using an ocean model that is driven by the NCEP fluxes for the period 1975-1998. The positive DM events during 1997, 1994 and 1982 and negative DM events during 1996 and 1984-1985 are captured by the model and it reproduces both the surface and subsurface features associated with these events. In its positive phase, the DM is characterized by warmer than normal SST in the western Indian Ocean and cooler than normal SST in the eastern Indian Ocean. The DM events are accompanied by easterly wind anomalies along the equatorial Indian Ocean and upwelling-favorable alongshore wind anomalies along the coast of Sumatra. The Wyrtki jets are weak during positive DM events, and the thermocline is shallower than normal in the eastern Indian Ocean and deeper in the west. This anomaly pattern reverses during negative DM events. During the positive phase of the DM easterly wind anomalies excite an upwelling equatorial Kelvin wave. This Kelvin wave reflects from the eastern boundary as an upwelling Rossby wave which propagates westward across the equatorial Indian Ocean. The anomalies in the eastern Indian Ocean weaken after the Rossby wave passes. A similar process excites a downwelling Rossby wave during the negative phase. This Rossby wave is much weaker but wind forcing in the central equatorial Indian Ocean amplifies the downwelling and increases its westward phase speed. This Rossby wave initiates the deepening of the thermocline in the western Indian Ocean during the following positive phase of the DM. Rossby wave generated in the southern tropical Indian Ocean by Ekman pumping contributes to this warming. Concurrently, the temperature equation of the model shows upwelling and downwelling to be the most important mechanism during both positive events of 1994 and 1997. (C) 2002 Elsevier Science Ltd. All rights reserved.