365 resultados para PRESSURE SENSITIVITY
Resumo:
Instrumented indentation experiments on a Zr-based bulk metallic glass (BMG) in as-cast, shot-peened and structurally relaxed conditions were conducted to examine the dependence of plastic deformation on its structural state. Results show significant differences in hardness, H, with structural relaxation increasing it and shot peening markedly reducing it, and slightly changed morphology of shear bands around the indents. This is in contrast to uniaxial compressive yield strength, sigma(y), which remains invariant with the change in the structural state of the alloys investigated. The plastic constraint factor, C = H/sigma(y), of the relaxed BMG increases compared with that of the as-cast glass, indicating enhanced pressure sensitivity upon annealing. In contrast, C of the shot-peened layer was found to be similar to that observed in crystalline metals, indicating that severe plastic deformation could eliminate pressure sensitivity. Microscopic origins for this result, in terms of shear transformation zones and free volume, are discussed.
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.
Resumo:
Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications, It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker-Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction-separation law. The results show that for a given mode mixity, the steady state Fracture toughness [K](ss) is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, [K](ss) increases steeply as mode Il loading is approached. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5�10 6m -1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from -12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results. © 2012 Elsevier Inc.
Resumo:
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones. notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode If component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.
Resumo:
The objective of the present work is to propose a constitutive model for ice by considering the influence of important parameters such as strain rate dependence and pressure sensitivity on the response of the material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage mechanics framework. The damage is taken to occur in the form of distributed cracking within the material during impact which is consistent with experimental observations. At the point of failure, the material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive model is implemented in a general purpose finite element code using an explicit formulation. Several single element tests under uniaxial tension and compression, as well as biaxial loading are conducted in order to understand the performance of the model. Few large size simulations are also performed to understand the capability of the model to predict brittle damage evolution in un-notched and notched three point bend specimens. The proposed model predicts lower strength under tensile loading as compared to compressive loading which is in tune with experimental observations. Further the model also asserts the strain rate dependency of the strength behavior under both compressive as well as tensile loading, which also corroborates well with experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully lastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248-348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to beta-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.
Resumo:
FET based MEMS microphones comprise of a flexible diaphragm that works as the moving gate of the transistor. The integrated electromechanical transducer can be made more sensitive to external sound pressure either by increasing the mechanical or the electrical sensitivities. We propose a method of increasing the overall sensitivity of the microphone by increasing its electrical sensitivity. The proposed microphone uses the transistor biased in the sub-threshold region where the drain current depends exponentially on the difference between the gate-to-source voltage and the threshold voltage. The device is made more sensitive without adding any complexity in the mechanical design of the diaphragm.
The Behaviour of Two-Phase Flow of DNAPL and Water through a Fractured Rock under Confining Pressure
Resumo:
This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.
Resumo:
In this paper we investigate the effect of core-shell structure of Sodium Alginate based hydrogel beads and their size on certain activation threshold concentration of water for applications in swelling and pH sensing. This type of hydrogel experiences diffusive pressure due to transport of certain free charges across its interface with a solvent or electrolyte. This process is essentially a dynamic equilibrium of the electric force field, stress in the polymeric network with cage like structure and molecular diffusion including phase transformation due to pressure imbalance between the hydrogel and its surroundings. The effect of pH of the solvant on the swelling rate of these beads has been studied experimentally. A mathematical model of the swelling process has been developed by considering Nernst-Planck equation representing the migration of mobile ions and Er ions, Poisson equation representing the equilibrium of the electric field and mechanical field equation representing swelling of the gel. An attempt has been made to predict the experimentally observed phenomena using these numerical simulations. It is observed experimentally that certain minimum concentration called activation threshold concentration of the water molecules must be present in the hydrogel in order to activate the swelling process. For the required activation threshold concentration of water in the beads, the pH induced change in the rate of swelling is also investigated. This effect is analyzed for various different core-shell structures of the beads.
Resumo:
Diaphragm thickness and the corresponding piezoresistor locations change due to over or under etching in bulk micromachined piezoresistive pressure sensor which intern influences the device performance. In the present work, variation of sensitivity and nonlinearity of a micro electro mechanical system low pressure sensor is investigated. The sensor is modeled using finite element method to analyze the variation of sensitivity and nonlinearity with diaphragm thickness. To verify the simulated results, the sensors with different diaphragm thicknesses are fabricated. The models are verified by comparing the calculated results with experimental data. This study is potentially useful for the researchers as most of the times the diaphragm is either over-etched or under-etched due to inherent variation in wafer thickness and involving manual operations.
Resumo:
The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.
Resumo:
This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.
Resumo:
We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.