82 resultados para PHE
Resumo:
The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.
Resumo:
SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10-methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.
Resumo:
The tetrapeptide t-butyloxycarbonyl--aminoisobutyryl--aminoisobutyryl-L- phenylalanyl-L-methionyl amide crystallizes in the orthorhombic space group P212121 with a= 9.096, b= 18.067, c= 21.701 Å and Z= 4. The crystals contain one molecule of dimethyl sulphoxide (DMSO) associated with each peptide. The structure has been solved by direct methods and refined to an R value of 0.103 for 2 672 observed reflections. The peptide adopts a distorted 310 helical structure stabilized by two intramolecular 4 1 hydrogen bonds between the Boc CO and Aib(1) CO groups and the NH groups of Phe(3) and Met(4), respectively. A long hydrogen bond (N O = 3.35 Å) is also observed between Aib(2) CO and one of the terminal amide hydrogens. The DMSO molecule is strongly hydrogen bonded to the Aib(1) NH group. The solid-state conformation agrees well with proposals made on the basis of n.m.r. studies in solution.
Resumo:
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.
Resumo:
The conformation of the synthetic cyclic tetrapeptide cyclo(D-Phe-Pro-Sar-Gly) has been determined in solution using the nuclear magnetic resonance technique and in the crystal state by X-ray crystallography. Results showed that the peptide exhibited two different conformations in solution, conformer 1 having cis-trans-cis-trans peptide bonds and conformer 2 having trans-cis-trans-cis peptide bonds. No intramolecular hydrogen bonds were observed in the structures. The X-ray diffraction studies showed the crystals to be orthorhombic with space group P2(1)2(1)2(1) with unit-cell dimensions, a = 5.790, b = 10.344, c = 31.446 A, Z = 4, R = 0.104 for 2301 observed reflections. The crystal structure showed only one type of conformer having cis-trans-cis-trans peptide bonds similar to the conformer 1 in solution.
Resumo:
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
The conformation of (Pro-Gly-Phe)n in trifluoroethanol was investigated using CD, nmr and ir techniques. After making appropriate correction for the contribution of the phenylalanine chromophore to the observed CD spectra of the polytripeptide at several temperatures, it is found that (Pro-Gly-Phe)n can exist in a partially triple-helical conformation in this solvent a t low temperatures. The nmr and ir data support this conclusion. In conjunction with recent theoretical sutdies, our data offer an explanation for the preferential occurrence of the Phe residue in position 2 of the tripeptide sequence Gly-R2-R3, in collagen.
Resumo:
The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.
Resumo:
The crystal structure of the peptide Boc-Phe-Val-OMe determined by X-ray diffraction methods is reported in this paper. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1), a = 11.843(2), b = 21.493(4), c = 26.676(4)Angstrom and V = 6790 Angstrom(3). Data were collected on a CAD4 diffractometer using MoK2 radiation (lambda = 0.7107 Angstrom) up to Bragg angle theta = 26 degrees. The structure was solved by direct methods and refined by a least-squares procedure to an R value of 6.8% for 3288 observed reflections. There are three crystallographically independent peptide molecules in the asymmetric unit. All the three molecules exhibit extended conformation. The sidechain of the Val(2) residue shows two different conformations. The conformation of the peptide Boc-Phe-Val-OMe is compared with the conformation of Ac-Delta Phe-Val-OH. It is observed that while Boc-Phe-Val-OMe exhibits an extended conformation, Ac-Delta Phe-Val-OH shows a folded conformation. The results of this comparison highlight the conformation constraining property of the Delta Phe residue. Interestingly, even though Boc-Phe-Val-OMe and Ac-Delta Phe-Val-OH are conformationally different, they exhibit similar packing patterns in the solid state. (C) Munksgaard 1995.