23 resultados para Orientierung im Raum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control., using only inverter switching state redundancies. The proposed power circuit gives a simple power bits structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multilevel inverter with 12-sided polygonal voltage space vector structure is proposed in this paper. The present scheme provides elimination of common mode voltage variation and 5(th) and 7(th) order harmonics in the entire operating range of the drive. The proposed multi level structure is achieved by cascading only the conventional two-level inverters with asymmetrical DC link voltages. The bandwidths problems associated with conventional hexagonal voltage space vector structure current controllers, due to the presence of 5(th) and 7(th) harmonics, in the over modulation region, is absent in the present 12-sided structure. So a linear voltage control up to 12-step operation is possible, from the present twelve sided scheme, with less current control complexity. An open-end winding structure is used for the induction motor drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray analysis of the ternary complex [Cu(5′-UMP)(im)2(H2O)]·4H2O, where 5′-UMP uridine-5′-monophosphate and IM = imidazole, reveals a novel metal binding mode of pyrimidine nucleotide through the ribose group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control, using only inverter switching state redundancies. The proposed power circuit gives a simple power bus structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new hybrid nine-level inverter topology for IM drive. The nine-level structure is realized by using two three-phase two-level inverters fed by isolated DC voltage sources and six H-bridges fed by capacitors. The number of switches required in this topology is only 36 where as the conventional nine-level topologies require 48 switches. The voltages across the capacitors, feeding the H-bridges that operate at asymmetric voltages, are effectively balanced by making use of the switching state redundancies. In this topology, the requirement of DC link voltage is only half of the maximum magnitude of the voltage space vector. As the two-level inverters are powered by isolated voltage sources, the circulation of triplen harmonic current in the motor winding is prevented. The proposed drive system is capable of functioning in three-level mode in case of any switch failure in H-bridges. The performance of the proposed topology in the entire modulation range is verified by simulation study and experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hybrid five-level inverter topology with common-mode voltage (CMV) elimination for induction motor drive is proposed in this paper. This topology has only one dc source, and different voltage levels are generated by using this voltage source along with floating capacitors charged to asymmetrical voltage levels. The pulsewidth modulation (PWM) scheme employed in this topology balances the capacitor voltages at the required levels at any power factor and modulation index while eliminating the CMV. This inverter has good fault-tolerant capability as it can be operated in three-or two-level mode with CMV elimination, in case of any failure in the H-bridges. More voltage levels with CMV elimination can be realized from this topology but only in a limited range of modulation index and power factor. Extensive simulation is done to validate the PWM technique for CMV elimination and balancing of the capacitor voltages. The experimental verification of the proposed inverter-fed induction motor is carried out in the linear modulation and overmodulation regions. The steady-state and transient operations of the drive are verified. The dynamics of the capacitor voltage balancing is also tested. The experimental results demonstrate that the proposed topology can be considered for industrial drive applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dodecagonal (12-sided) space vector pulsewidth modulation (PWM) schemes are characterized by the complete absence of (6n +/- 1)th-order harmonics (for odd n) in the phase voltages, within the linear modulation range and beyond, including over-modulation. This paper presents a new topology suitable for the realization of such multilevel inverter schemes for induction motor (IM) drives, by cascading two-level inverters with flying-capacitor-inverter fed floating H-bridge cells. Now, any standard IM may be used to get the dodecagonal operation which hitherto was possible only with open-end winding IM. To minimize the current total harmonic distortion (THD), a strategy for synchronous PWM is also proposed. It is shown that the proposed method is capable of obtaining better THD figures, compared to conventional dodecagonal schemes. The topology and the PWM strategy are validated through analysis and subsequently verified experimentally.